Devin Schrader
-
Phone: 480-965-0720
-
-
Mail code: 6004Campus: Tempe
-
Dr. Schrader’s research interests concern primitive astromaterials that remain unaltered since their formation in the early Solar System and meteorites that were thermally and aqueously altered on their parent asteroids. He primarily studies carbonaceous chondrites, ordinary chondrites and Hayabusa particles from asteroid Itokawa, but has worked on a range of extraterrestrial materials. His research aims to characterize primitive early Solar System material, determine its variability between meteorite groups, and understand its evolution.
Dr. Schrader utilizes petrographic, chemical, isotopic, and thermodynamic data to constrain the pre-accretionary formation conditions and secondary thermal and aqueous alteration processes of small bodies in the early Solar System. He achieves this by analyzing the chemical and physical properties of primitive carbonaceous chondrites, including the Renazzo-like (CR), Mighei-like (CM), Ornans-like (CO), Vigarano-like (CV), and Ivuna-like (CI) carbonaceous chondrites. He also studies ordinary chondrites, and has worked on Rumuruti-like (R) chondrites, primitive achondrites, and iron meteorites.
Dr. Schrader’s research utilizes advanced sample preparation techniques, such as focused-ion-beam (FIB) lift-out and ultramicrotomy, alongside traditional optical microscopy and state-of-the-art techniques and equipment, including secondary ion mass spectrometry (SIMS), field emission electron probe microanalysis (FE-EPMA), and scanning electron microscopy (SEM). He also previously provided sample science support for NASA’s OSIRIS-REx asteroid sample return mission as a Science Team Member.
- Ph.D. Planetary Science, University of Arizona 2012
- B.S. Astronomy and in Physics, University of Arizona 2006
Dr. Schrader’s research interests concern primitive astromaterials that remain unaltered since their formation in the early Solar System and meteorites that were thermally and aqueously altered on their parent asteroids. He primarily studies carbonaceous chondrites, ordinary chondrites and Hayabusa particles from asteroid Itokawa, but has worked on a range of extraterrestrial materials. His research aims to characterize primitive early Solar System material, determine its variability between meteorite groups, and understand its evolution.
Dr. Schrader utilizes petrographic, chemical, isotopic, and thermodynamic data to constrain the pre-accretionary formation conditions and secondary thermal and aqueous alteration processes of small bodies in the early Solar System. He achieves this by analyzing the chemical and physical properties of primitive carbonaceous chondrites, including the Renazzo-like (CR), Mighei-like (CM), Ornans-like (CO), Vigarano-like (CV), and Ivuna-like (CI) carbonaceous chondrites. He also studies ordinary chondrites, and has worked on Rumuruti-like (R) chondrites, primitive achondrites, and iron meteorites.
Dr. Schrader’s research utilizes advanced sample preparation techniques, such as focused-ion-beam (FIB) lift-out and ultramicrotomy, alongside traditional optical microscopy and state-of-the-art techniques and equipment, including secondary ion mass spectrometry (SIMS), field emission electron probe microanalysis (FE-EPMA), and scanning electron microscopy (SEM). He also provides sample science support for NASA’s OSIRIS-REx asteroid sample return mission as a Science Team Member.
Journals
45. Mouti Al-Hashimi X., Davidson J., Schrader D. L., and Bullock E. S. (2023) Fine-grained chondrule rims in Mighei-like carbonaceous chondrites: Evidence for a nebular origin and modification by impacts and recurrent solar radiation heating. Meteorit. Planet. Sci. In Press, https://doi.org/10.1111/maps.14076
44. Zhang B., Lin Y., Hao J., Schrader D. L., Wadhwa M., Korotev R. L., Hartmann W. K., and Bouvier A. (2023) SIMS U-Pb dating of micro-zircons in lunar meteorites Dhofar 1528 and Dhofar 1627. Meteorit. Planet. Sci. 58, 1540–1551. https://doi.org/10.1111/maps.14078
43. Davidson J. and Schrader D. L. (2023) The CR chondrites: Treasure troves from the early Solar System. Elements 19(2), 127–128. https://doi.org/10.2138/gselements.19.2.127.
42. Gattacceca J., McCubbin F. M., Grossman J. N., Schrader D. L., Chabot N. L., D’Orazio M., Goodrich C., Greshake A., Gross J., Joy K. H., Komatsu M., and Miao B. (2023) The Meteoritical Bulletin, No. 111. Meteorit. Planet. Sci. 58, 901–904. https://doi.org/10.1111/maps.13995
41. Zhu K., Schiller M., Moynier F., Groen M., Alexander C. M. O’D., Davidson J., Schrader D. L., Bischoff A., and Bizzarro M. (2023) Chondrite diversity revealed by chromium, calcium and magnesium isotopes. Geochim. Cosmochim. Acta 342, 156–168. https://doi.org/10.1016/j.gca.2022.12.014
40. Gattacceca J., McCubbin F. M., Grossman J., Bouvier A., Chabot N. L., D’Orazio M., Goodrich C., Greshake A., Gross J., Komatsu M., Miao B., and Schrader D. (2022) The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105. https://doi.org/10.1111/maps.13918
39. Schrader D. L. and Davidson J. (2022) Prolonged early migration of dust from the inner Solar System to the comet-forming region. Earth Planet. Sci. Lett. 589, 117552. https://doi.org/10.1016/j.epsl.2022.117552
38. Dunham E. T. Wadhwa M., Desch S. J., Liu M.-C., Fujimoto Y., Fukuda K., Kita N., Hertwig A.T., Hervig R. L, Defouilloy C., Simon S. B., Davidson J., and Schrader D. L. (2022) Uniform 10Be/9Be in chondritic refractory inclusions: Implications for molecular cloud origin of 10Be and the Sun’s birth environment. Geochim. Cosmochim. Acta 324, 194 – 220. https://doi.org/10.1016/j.gca.2022.02.002
37. Zhu K., Moynier F., Alexander C. M. O’D., Davidson J., Schrader D. L., Zhu J-M., Wu G-L., Schiller M., Bizzarro M., and Becker H. (2021) Chromium stable isotope panorama of chondrites and implications for Earth early accretion. ApJ. 923, 94. https://doi.org/10.3847/1538-4357/ac2570
36. Gattacceca J., McCubbin F. M., Grossman J., Bouvier A., Bullock E., Chennaoui Aoudjehane H., Debaille V., D’Orazio M., Komatsu M., Miao B., and Schrader D. L. (2021) The Meteoritical Bulletin, No. 109. Meteorit. Planet. Sci. 56, 1626–1630. https://doi.org/10.1111/maps.13714
35. Hamilton V. E., Kaplan H. H., Christensen P. R., Haberle C. W., Rogers A. D., Glotch T. D., Breitenfeld L. B., Goodrich C. A., Schrader D. L., Lantz C., Hanna R. D., and Lauretta D. S. (2021) Evidence for limited compositional and particle size variation on asteroid (101955) Bennu from thermal infrared spectroscopy. Astronomy & Astrophysics 650, A120. https://doi.org/10.1051/0004-6361/202039728.
34. Schrader D. L., Davidson J., McCoy T. J., Zega T. J., Russell S. S., Domanik K. J., and King A. J. (2021) The Fe/S ratio of pyrrhotite group sulfides in chondrites: An indicator of oxidation and implications for return samples from asteroids Ryugu and Bennu. Geochim. Cosmochim. Acta 303, 66–91. https://doi.org/10.1016/j.gca.2021.03.019
33. Merlin F., Deshapriya J. D. P, Fornasier S., Barucci M. A., Praet A., Hasselmann P. H., Clark B. E., Hamilton V. E., Simon A. A., Reuter D. C., Zou X.-D., Li J.-Y., Schrader D. L., and Lauretta D. S. (2021) In search of Bennu analogs: Hapke modeling of meteorite mixtures. Astronomy & Astrophysics 648, A88. https://doi.org/10.1051/0004-6361/202140343
32. Zhu K., Moynier F., Schiller M., Alexander C. M. O’D., Davidson J., Schrader D. L., van Kooten E., and Bizzarro M. (2021) Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion. Geochim. Cosmochim. Acta 301, 158–186. https://doi.org/10.1016/j.gca.2021.02.031
33. Torrano Z. A., Schrader D. L., Davidson J., Greenwood R. C., Dunlap D. R., and Wadhwa M. (2021) The relationship between CM and CO chondrites: Insights from combined analyses of titanium, chromium, and oxygen isotopes in CM, CO, and ungrouped chondrites. Geochim. Cosmochim. Acta 301, 70–90. https://doi.org/10.1016/j.gca.2021.03.004
30. Donaldson Hanna K. L., Bowles N. E., Warren T. J., Hamilton V. E., Schrader D. L., McCoy J. T., Temple J., Clack A., Calcutt S., and Lauretta D. S. (2021) Spectral Characterization of Bennu Analogs Using PASCALE: A New Experimental Set-up for Simulating the Near-Surface Conditions of Airless Bodies. Journal of Geophysical Research: Planets 126, e2020JE006624. https://doi.org/10.1029/2020JE006624
29. Schrader D. L., Nagashima K., Davidson J., McCoy T. J., Ogliore R. C., and Fu R. R. (2020) Outward migration of chondrule fragments in the Early Solar System: O-isotopic evidence for rocky material crossing the Jupiter Gap? Geochim. Cosmochim. Acta 282, 133–155. https://doi.org/10.1016/j.gca.2020.05.014
28. Fu R. R., Kehayias P., Weiss B. P., Schrader D. L., Bai X.-N., and Simon J. B. (2020) Weak magnetic fields in the outer solar nebula recorded in CR chondrites. Journal of Geophysical Research: Planets 125. e2019JE006260. https://doi.org/10.1029/2019JE006260
27. Wadhwa M., McCoy T. J., and Schrader D. L. (2020) Advances in Cosmochemistry Enabled by Antarctic Meteorites. Annual Review in Planetary Science 48, 233–258. https://doi.org/10.1146/annurev-earth-082719-055815
26. Davidson J., Schrader D. L., Alexander C. M. O’D., Nittler L. R., and Bowden R. (2019) Re-examining thermal metamorphism of the Renazzo-like (CR) carbonaceous chondrites: Insights from pristine Miller Range 090657 and shock-heated Graves Nunataks 06100. Geochim. Cosmochim. Acta 267, 240–256. https://doi.org/10.1016/j.gca.2019.09.033
25. McCoy T. J., Corrigan C. M., Dickinson T. L., Benedix G. K., Schrader D. L., and Davidson J. (2019) Grove Mountains (GRV) 020043: Insights into Acapulcoite-Lodranite genesis from the most primitive member. Geochemistry 79, 125536. https://doi.org/10.1016/j.chemer.2019.125536
24. Schrader D. L. and Zega T. J. (2019) Petrographic and compositional indicators of formation and alteration conditions from LL chondrite sulfides. Geochim. Cosmochim. Acta 264, 165–179. https://doi.org/10.1016/j.gca.2019.08.015
23. Lunning N. G., McCoy T. J., Schrader D. L., Nagashima K., Corrigan C. M., Gross J., and Kracher A. (2019) Lewis Cliff 86211 and 86498: Metal-Sulfide liquid segregates from a carbonaceous chondrite impact melt. Geochim. Cosmochim. Acta 259, 253–269. https://doi.org/10.1016/j.gca.2019.05.032
22. Hamilton V., Simon A., Christensen P., Reuter D., Clark B., Barucci A., Bowles N., Boynton W., Brucato J., Cloutis E., Connolly Jr. H., Donaldson Hanna K., Emery J., Enos H., Fornasier S., Haberle C., Hanna R., Howell E., Kaplan H., Keller L., Lantz C., Li J.-Y., Lim L., McCoy T., Merlin F., Nolan M., Praet A., Rozitis B., Sandford S., Schrader D. L., Thomas C., Zou X.-D., Lauretta D., and the OSIRIS-REx Team. (2019) Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy 3, 332–340. https://doi.org/10.1038/s41550-019-0722-2
21. Donaldson Hanna K. L., Schrader D. L., Cloutis E. A., Cody G. D., King A. J., McCoy T. J., Applin D. M., Mann J. P., Bowles N. E., Brucato J. R., Connolly H. C. Jr., Dotto E., Keller L. P., Lim L. F., Clark B. E., Hamilton V. E., Lantz C., Lauretta D. S., Russell S. S., and Schofield P. F. (2019) Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx’s Arrival at Bennu: A Blind Test Study. Icarus 319, 701-723. https://doi.org/10.1016/j.icarus.2018.10.018
20. Schrader D. L., Fu R. R., Desch S. J., and Davidson J. (2018) The background temperature of the protoplanetary disk within the first four million years of the Solar System. Earth Planet. Sci. Lett. 504, 30–37. https://doi.org/10.1016/j.epsl.2018.09.030
19. Schrader D. L., Nagashima K., Waitukaitis S. R., Davidson J., McCoy T. J., Connolly Jr. H. C., and Lauretta D. S. (2018) The retention of dust in protoplanetary disks: Evidence from agglomeratic olivine chondrules from the outer Solar System. Geochim. Cosmochim. Acta 223, 405–421. https://doi.org/10.1016/j.gca.2017.12.014
18. Jilly-Rehak C. E., Huss G. R., Nagashima K., and Schrader D. L. (2018) Low temperature aqueous alteration on the CR chondrite parent body: Implications from in situ oxygen isotopes. Geochim. Cosmochim. Acta 222, 230–252. https://doi.org/10.1016/j.gca.2017.10.007
17. Schrader D. L. and Davidson J. (2017) CM and CO chondrites: A common parent body or asteroidal neighbors? Insights from chondrule silicates. Geochim. Cosmochim. Acta 214, 157–171. https://doi.org/10.1016/j.gca.2017.07.031
16. Schrader D. L., McCoy T. J., and Gardner-Vandy K. (2017) Relict chondrules in primitive achondrites: Remnants from their precursor parent bodies. Geochim. Cosmochim. Acta 205, 295–312. https://doi.org/10.1016/j.gca.2017.02.012
15. Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C., Yin Q.-Z., Amelin Y. A., Stirling C. H., and Kaltenbach A. (2017) Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta 201, 275–302. https://doi.org/10.1016/j.gca.2016.06.023
14. Schrader D. L., Davidson J., and McCoy T. J. (2016) Widespread evidence for high-temperature formation of pentlandite in chondrites. Geochim. Cosmochim. Acta 189, 359–376. https://doi.org/10.1016/j.gca.2016.06.012
13. Schrader D. L., Connolly H. C. Jr., Lauretta D. S., Zega T. J., Davidson J., and Domanik K. J. (2015) The formation and alteration of the Renazzo-like carbonaceous chondrites III: Towards understanding the genesis of ferromagnesian chondrules. Meteorit. Planet. Sci. 50, 15–50. https://doi.org/10.1111/maps.12402
12. Howard K. T., Alexander C.M.O.’D, Schrader D. L., and Dyl K. A. (2015) Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochim. Cosmochim. Acta 149, 206–222. https://doi.org/10.1016/j.gca.2014.10.025
11. Davidson J., Schrader D. L., Lauretta D. S., Busemann H., Alexander C.M. O’D., Greenwood R. C., Domanik K. J., Franchi I. A. and Verchovsky A. (2014) Petrology, geochemistry, stable isotopes, Raman spectroscopy, and presolar components of RBT 04133: A reduced CV3 carbonaceous chondrite. Meteorit. Planet. Sci. 49, 2133–2151. https://doi.org/10.1111/maps.12377
10. Schrader D. L., Davidson J., Greenwood R. C., Franchi I. A., and Gibson J. M. (2014) A water-ice rich minor body from the early Solar System: The CR chondrite parent asteroid. Earth Planet. Sci. Lett. 407, 48–60. https://doi.org/10.1016/j.epsl.2014.09.030
9. Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C., and Hellebrand E. (2014) Variations in the O-isotope compositions of gas during the formation of chondrules from the CR chondrites. Geochim. Cosmochim. Acta 132, 50–74. https://doi.org/10.1016/j.gca.2014.01.034
8. Schrader D. L., Connolly H. C. Jr., Lauretta D. S., Nagashima K., Huss G. R., Davidson J. and Domanik K. J. (2013) The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochim. Cosmochim. Acta 101, 302–327. https://doi.org/10.1016/j.gca.2012.09.045
7. Pizzarello S., Schrader D. L., Monroe A. A. and Lauretta D. S. (2012) The chiral composition of primitive CR meteorites and the diverse effects of water in cosmochemical evolution. P. Natl. Acad. Sci. USA 109, 11949–11954. https://doi.org/10.1073/pnas.1204865109
6. Ma C., Connolly H. C. Jr., Beckett J. R., Tschauner O., Rossman G. R., Kampf A. R., Zega T. J., Sweeny Smith S. A. and Schrader D. L. (2011) Brearleyite, Ca12Al14O32Cl2, a new alteration mineral from the NWA 1934 meteorite. Am. Mineral. 96, 1199–1206. https://doi.org/10.2138/am.2011.3755
5. Ma C., Kampf A. R., Connolly H. C. Jr., Beckett J. R., Rossman G. R., Sweeny Smith S. A. and Schrader D. L. (2011) Krotite, CaAl2O4, a new refractory mineral from the NWA 1934 meteorite. Am. Mineral. 96, 709–715. https://doi.org/10.2138/am.2011.3693
4. Schrader D. L., Franchi I. A., Connolly H. C. Jr., Greenwood R. C., Lauretta D. S. and Gibson J. M. (2011) The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochim. Cosmochim. Acta 75, 308–325. https://doi.org/10.1016/j.gca.2010.09.028
3. Schrader D. L., Lauretta D. S., Connolly H. C. Jr., Goreva Y. S., Hill D. H., Domanik K. J., Berger E. L., Yang H. and Downs R. T. (2010) Sulfide-rich metallic impact melts from chondritic parent bodies. Meteorit. Planet. Sci. 45, 743–758. https://doi.org/10.1111/j.1945-5100.2010.01053.x
2. Schrader D. L. and Lauretta D. S. (2010) High-temperature experimental analogs of primitive meteoric metal-sulfide-oxide assemblages. Geochim. Cosmochim. Acta 74, 1719–1733. https://doi.org/10.1016/j.gca.2009.11.030
1. Schrader D. L., Connolly H. C. Jr. and Lauretta D. S. (2008) Opaque phases in type-II chondrules from CR2 chondrites: Implications for CR parent body formation. Geochim. Cosmochim. Acta 72, 6124–6140. https://doi.org/10.1016/j.gca.2008.09.011
Spacecraft Team Mission Papers
These are papers where I contributed to the paper and am included in The OSIRIS-REx Team part of the author list.
5. Barnouin O. S. et al., and The OSIRIS-REx Team (2019) Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience 12, 247–252. https://doi.org/10.1038/s41561-019-0330-x
4. Hergenrother C. W. et al., and The OSIRIS-REx Team (2019) The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nature Communications 10, 1291. https://doi.org/10.1038/s41467-019-09213-x
3. Scheeres D. J. et al., and The OSIRIS-REx Team (2019) The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nature Astronomy 3, 352–361. https://doi.org/10.1038/s41550-019-0721-3
2. DellaGiustina D. N. et al., and The OSIRIS-REx Team (2019) Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy 3, 341–351. https://doi.org/10.1038/s41550-019-0731-1
1. Lauretta D. S. et al., and The OSIRIS-REx Team (2019) The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60. https://doi.org/10.1038/s41586-019-1033-6
Book Chapters
3. Schrader D. L., Davidson J., McCoy T. J., Thompson M. S., and Zega T. J. (2024/2025) Chapter 20: Sulfides in Meteorites, Asteroids, and Comets. In The Role of Sulfur in Planetary Processes: from Cores to Atmospheres (eds. Harlov D. and Pokrovski G.), Springer (Book chapter), Accepted, In Press.
2. Tenner T. J., Ushikubo T., Nakashima D., Schrader D. L., Weisberg M. K., Kimura M., and Kita N. T. (2018) Oxygen Isotope Characteristics of Chondrules from Recent Studies by Secondary Ion Mass Spectrometry. In Chondrules (eds. S. Russell, H. C. Connolly Jr., and A. N. Krot). Cambridge University Press, pp. 196–246. https://doi.org/10.1017/9781108284073.008
1. Fu R. R., Weiss B. P., Schrader D. L., and Johnson B. C. (2018) Records of magnetic fields in the chondrule formation environment. In Chondrules (eds. S. Russell, H. C. Connolly Jr., and A. N. Krot). Cambridge University Press, pp. 324–340. https://doi.org/10.1017/9781108284073.012
White Papers
1. Ishii H. A., Corrigan C. M., Bose M., Davidson J., Fries M., Gross J., Karner J., Nittler L. R., Schrader D. L., Stroud R., Taylor S., and CAPTEM (2020) Terrestrial recovery of extraterrestrial materials: Providing continued, long-term sample analysis opportunities for research and mission support. Planetary Science and Astrobiology Decadal Survey 2020.
Courses
2024 Fall
Course Number | Course Title |
---|---|
SES 499 | Individualized Instruction |
2023 Fall
Course Number | Course Title |
---|---|
SES 499 | Individualized Instruction |
LIA 194 | Special Topics |
2023 Spring
Course Number | Course Title |
---|---|
LIA 194 | Special Topics |
2022 Fall
Course Number | Course Title |
---|---|
SES 499 | Individualized Instruction |
2021 Fall
Course Number | Course Title |
---|---|
SES 499 | Individualized Instruction |
LIA 194-85251. Discovery Seminar, Rocks from Space: History and Pop Culture, (co-taught with Dr. Jemma Davidson) Fall 2023.
LIA 194-27759. Discovery Seminar, Rocks from Space: History and Pop Culture, (co-taught with Dr. Jemma Davidson) Spring 2023.
SES 591/594. Advances in Solar System Exploration with Sample Return Missions. Two guest lectures: ‘The OSIRIS-REx Asteroid Sample Return Mission’ and Discussion (Dr. Meenakshi Wadhwa, ASU, Spring 2023).
GLG 485. Meteorites and Cosmochemistry. Two guest lectures: ‘Meteorite Classification’, and ‘Iron Meteorites’ (Dr. Larry Nittler, ASU, Spring 2023)
SES 499. Individualized Instruction. Independent study in meteorite research, Fall 2021.
SES 520. Exploring SESE Research. Guest lecture on sample return missions, Fall 2021.
SES 191. Exploring SESE. Guest lecture on the interdisciplinary nature of meteoritics, Fall 2021.
GLG 485. Meteorites and Cosmochemistry. Two guest lectures: ‘Meteorite Classification’, and ‘OSIRIS-REx’ (Dr. Meenakshi Wadhwa, ASU, Spring 2021)
GLG 485. Meteorites and Cosmochemistry. Three guest lectures: ‘Meteorites’, ‘Classification’, and ‘OSIRIS-REx’ (Dr. Meenakshi Wadhwa, ASU, Fall 2018)
ASTR 105. The Sky. One guest lecture: ‘Chondrules’ (Dr. Thomas Burbine, Mount Holyoke College, Spring 2018)
SES 494/591. Sample Return Missions. Three guest lectures on ‘OSIRIS-REx’, ‘Hayabusa’, and ‘Hayabusa2’ (Dr. Meenakshi Wadhwa, ASU, Spring 2018)
GLG 485. Meteorites and Cosmochemistry. One guest lecture: ‘OSIRIS-REx and Asteroid Sample Return Missions’ (Dr. Meenakshi Wadhwa, ASU, Fall 2016)
PTYS 214. Astrobiology: A Planetary Perspective. Graduate teaching assistant, presented six lectures: ‘Asteroids’; ‘Comets and Organic Matter’; ‘Extremophiles’; ‘Mars Exploration’; ‘Extra Solar Planets – Discovery and ground based observations’; ‘Extra Solar Planets – Space based observations and the future’; and a final exam review (Elisabetta Pierazzo, UA, Spring 2011)
NATS 102. The Universe and Humanity: Origin and Destiny. Graduate teaching assistant, presented one lecture: ‘Meteorites’ (Dr. Tim Swindle, UA, Fall 2009)
2017: Asteroid 117581 Devinschrader (formerly 2005 EG37) named for contributions to Planetary Science
2012: 2011 Nininger Award, Honorable Mention
2012: UA College of Science Galileo Circle Scholar
2011: UA-LPL Graduate Teaching Assistant Excellence Award
Current Appointments
2015 – present: Assistant Director, Center for Meteorite Studies, Arizona State University.
2015 – present: Assistant Research Professor, School of Earth and Space Exploration, Arizona State University.
Past Appointments
2013 – 2015: Postdoctoral Fellow, Smithsonian Institution, National Museum of Natural History, Department of Mineral Sciences, Washington, DC.
Advisor: Timothy J. McCoy
2012 – 2013: Postdoctoral Fellow, Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI.
Advisor: Alexander N. Krot
2012: Research/Laboratory Assistant, Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ.
Advisor: Dante S. Lauretta
2006: REU Intern, American Museum of Natural History, New York City, NY.
Advisor: Harold C. Connolly Jr.
2004 – 2005: Electron Microprobe Mineral Analysis, RRUFF Project, Department of Geosciences, University of Arizona, Tucson, AZ.
Advisor: Robert T. Downs
2003 – 2004: Intern, UA/NASA Space Grant Undergraduate Research Program, Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ.
Advisor: David A. Kring
Meteorite Working Group (MWG, NASA), Member (Jan. 2016–Dec. 2018)
Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM, NASA), Member (Jan. 2016–Dec. 2018)
Meteoritical Society Membership Committee, Member (Jan. 2017–Dec. 2019)