Evan Scannapieco
-
PSF 686 TEMPE, AZ 85287
-
Mail code: 6004Campus: Tempe
-
Prof. Scannapieco is a computational astrophysicist and a leader in advanced research computing. He is an expert in numerical studies of galaxy evolution, star formation, supernovae, active black holes, and fluid dynamics.
1996-2001 UC Berkeley Physics MS and Ph.D.
1992-1996 Harvard Univ. Physics A.B.
[149] The Hot Circumgalactic Medium in Stacked X-rays: Observations vs Simulations
S. Grayson, E. Scannapieco, J. Comparat, J. ZuHone, Y. Zhang, S. Shreeram,
M. Brüggen, E. Bulbul 2025, Astrophysical Journal, (ApJ) submitted (arXiv:2506.09123)
[148] Ion Densities of Cold Clouds Driven by Galactic Outflows
L. Yang, N. Katz, & E. Scannapieco 2025, Monthly Notices of the Royal Astronomical Society (MNRAS), submitted (arXiv:2501.09083)
[147] Cross-correlating the Patchy Screening and Kinetic Sunyaev-Zel'dovich Effects as a New Probe of Reionization D. M. Kramer, A. van Engelen, C. Cain, N. MacCrann, H. Trac, S. Grayson, E. Scannapieco, & B. Sherwin 2025, ApJ, submitted (arXiv:2501.07623)
[146] Kiloparsec-scale Turbulence Driven by Reionization May Grow Intergalactic Magnetic Fields C. Cain, E. Scannapieco, M. McQuinn, A. D'Aloisio, & H. Trac, 2025, Phys Rev. Letters, submitted
[145] Dynamics of Multiphase Carbon in the Turbulent Circumgalactic Medium
Y. Hu, E. Scannapieco, E. Buie II, S. Xu, S. Sebastian, O. Biswal 2025, (ApJ), in press (arXiv:2506.17554)
[144] The Importance of the Population III Initial Mass Function in Determining the Characteristics of the Earliest Galaxies R. Sarmento & E. Scannapieco 2025, ApJ, in press (arXiv:2506.20767)
[143] Integrated Extragalactic Light from Stacking 105 Random Pointings in the Dark Energy Survey Data J. E. Moore, S. H. Cohen, P. Mauskopf, & E. Scannapieco 2025, ApJ, in press (arXiv: 2506.08162)
[142] The Density Distribution of Compressively-Forced, Supersonic Turbulence Depends on the Driving Correlation Time P. Grete, E. Scannapieco, M. Brüggen, & L. Pan 2025, ApJ, 987, 122
[141] Magnetically-assisted Vorticity Production in Decaying Acoustic Turbulence A. Brandenburg & E. Scannapieco 2025, ApJ, 983, 105, pp. 12
[140] Understanding Density Fluctuations in Supersonic, Isothermal Turbulence
E. Scannapieco, L. Pan E. Buie II, & M. Brüggen, 2024, Science Advances, 10, 44, id eado3958, pp.14
[139] The imprint of magnetic fields on absorption spectra from circumgalactic wind-cloud Systems B. Casavecchia, W. E. Banda-Barragán, M. Brüggen, F. E. Brighenti, & E. Scannapieco 2024, Astronomy & Astrophysics, Volume 689, 127, pp. 26
[138] The Hydrodynamic Response of Small-scale Structure to Reionization Drives Large IGM Temperature Fluctuations that Persist to z = 4 C. Cain, E. Scannapieco, M. McQuinn, A. D'Aloisio, & H. Trac, 2024, MNRAS. 533, L100, pp. 7
[137] Distinguishing Active Galactic Nuclei Feedback Models with the Thermal Sunyaev- Zel'dovich Effect S. Grayson, E. Scannapieco, & R. Davé, 2023, Astrophysical Journal ApJ, 957, 17, pp. 12
[136] Constraining Circumgalactic Turbulence with QSO Absorption Line Measurements B. Koplitz, E. Buie II, & E. Scannapieco, 2023, ApJ, 956, 54, pp. 12
[135] Evidence of Extended Dust and Feedback around z ≈ 1 Quiescent Galaxies via Millimeter Observations J. Meinke, S. Cohen, J. Moore, K. Böckmann, P. Mauskopf, & E. Scannapieco, 2023, ApJ, 954, 119, pp. 21
[134] The Launching of Cold Clouds by Galaxy Outflows. V. The Role of Anisotropic Thermal Conduction M. Brüggen, E. Scannapieco, & P. Grete, 2023, ApJ, 951, 113, pp. 14
[133] The Effects of Radiative Feedback and Supernova-induced Turbulence on Early Galaxies R. Sarmento & E. Scannapieco, 2022, ApJ, 935, 174, pp. 10
[132] Modeling Photoionized Turbulent Material in the Circumgalactic Medium. III. Effects of Corotation and Magnetic Fields E. Buie II, E. Scannapieco, & G. Mark Voit, 2022, ApJ l, 927, 30, pp. 16
[131] A New Model for Including Galactic Winds in Simulations of Galaxy Formation II: Implementation of PhEW in cosmological simulations
S. Huang, N. Katz, J. Cottle, E. Scannapieco, R. Davé, & D. H. Weinberg 2022, MNRAS, 509, 609, pp. 23
[130] The Thermal Sunyaev-Zel'dovich Effect from Massive, Quiescent 0.5 ≤ z ≤ 1.5 Galaxies J., K. Böckmann, S. Cohen, P. Mauskopf, E. Scannapieco, R. Sarmento,
E. Lunde, & J. Cottle, ApJ, 913, 88, pp. 23
[129] Shock--multicloud interactions in galactic outflows - II. Radiative fractal clouds and cold gas thermodynamics W. Banda-Barragán, M, Brüggen, V. Heesen, E. Scannapieco, J. Cottle, C. Federrath, & A. Y. Wagner 2020, Monthly Notices of the Royal Astronomical Society, 506, 5658, pp. 20
[128] The Launching of Cold Clouds by Galaxy Outflows IV: Cosmic-Ray-Driven Acceleration M. Brüggen & E. Scannapieco 2020, ApJ, 905, 18, pp. 14
[127] Shock--multicloud interactions in galactic outflows - I. Cloud layers with log-normal density distributions W. Banda-Barragán, M, Brüggen, C. Federrath, A. Y. Wagner, E. Scannapieco, & J. Cottle 2020, MNRAS, 499, 2173, pp. 23
[126] Limits to Rest-Frame Ultraviolet Emission from Far-Infrared-Luminous z > 6 Quasar Hosts M. Marshall, M. Mechtley, R. A. Windhorst, S. H. Cohen, R. A. Jansen, V. R. Jones, J. S. B. Wyithe,, X. Fan, N. P. Hathi, K. Jahnke, L. Jiang, W. C. Keel, A. M. Koekemoer, V. Marian, J. Robinson, H. Röttgering, R. E. Ryan, Jr., E. Scannapieco, D. P. Schneider, G. Schneider, B. M. Smith, M. A. Strauss, & H. Yan 2020, ApJ, 900, 21, pp. 22
[125] A New Model for Including Galactic Winds in Simulations of Galaxy Formation I: Introducing the Physically Evolved Winds (PhEW) Model
S. Huang, N. Katz, E. Scannapieco, J. Cottle, R. Davé, D. H. Weinberg, J. A. Kollmeier, & M. S. Peeples 2020, MNRAS, 498, 2586, pp. 21
[124] Modeling Photoionized Turbulent Material in the Circumgalactic Medium II: Effect of Turbulence within a Stratified Medium E. Buie, E. Scannapieco, W. J. Gray, & M. Safarzadeh 2020, ApJ, 893, 136, pp. 24
[123] The Launching of Cold Clouds by Galaxy Outflows III: The Influence of Magnetic Fields J. Cottle, E. Scannapieco, M. Brüggen, W, Banda-Barragán, & C. Federrath, 2020, ApJ, 892, 59, pp. 15
[122] Modeling Observations of Absorption Lines in the Circumgalactic Medium with a Turbulent Medium E. Buie, M. Fumagalli, & E. Scannapieco 2020, ApJ, 890, 33 pp. 19 [121] Magnetic helicity dissipation and production in an ideal MHD code
A. Brandenburg, & E. Scannapieco 2020, ApJ, 889, 55, pp. 9
[120] Catastrophic Cooling in Galaxy Outflows: Line Emission and Nonequilibrium Ionization W. J. Gray, M. S. Oey, S. Silich, & E. Scannapieco 2019, ApJ, 887, 161, pp. 17
[119] Warped diffusive radio halo around the quiescent spiral edge-on galaxy NGC 4565 V. Heesen, L. Whitler, P. Schmidt, A. Miskolczi, S. S. Sridhar, R. Beck, G. Gurkan, E. Scannapieco, & M. Bruggen 2019, A&A, 628, 3, pp. 9
[118] Measuring the Delay Time Distribution of Binary Neutron Stars II: Using the Redshift Distribution from Third-Generation Gravitational Wave Detectors
M. Safarzadeh, E. Berger, K.-Y. Ng, H.-Y. Chen, S. Vitale, C. Whittle, E. Scannapieco 2019, ApJ, 878, 13, pp. 9
[117] On Neutron Star Mergers as the Source of r-process Enhanced Metal-Poor Stars in the Milky Way M. Safarzadeh, R. Sarmento, & E. Scannapieco 2019, ApJ, 876, 28, pp. 10c
[116] Non-equilibrium Ionization States within Galaxy Outflows: Explaining Their OVI and NV Columns Densities W. J. Gray, E. Scannapieco, & M. D. Lehnert 2019, ApJ, 875, 110, pp. 12
[115] r-process Enrichment of Ultra-Faint Dwarf Galaxies by Fast Merging Double Neutron Stars M. Safarzadeh, E. Ramirez-Ruiz, J. J. Andrews, P. Macias, T. Fragos, & E Scannapieco, 2019 ApJ, 872, 105, pp. 9
[114] Hot X-ray Atmospheres, Molecular Gas, and AGN Feedback in Early Type Galaxies: A Topical Perspective N. Werner, B. R. McNamara, E. Churazov, & E. Scannapieco, 2019, Space Science Reviews, 215, 5, pp. 48
[113] Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich Effects: A Millimetre/Submillimetre Probe of the Warm and Hot Universe
T. Mroczkowski, D. Nagai, K. Basu, J. Chluba, J. Sayers, R. Adam, E. Churazov,
A. Crites, L. Di Mascolo, D. Eckert, J. Macias-Perez, F. Mayet, L. Perotto, E. Pointecouteau, C. Romero, F. Ruppin, E. Scannapieco, J. ZuHone 2019, Space Science Reviews, 215, 17, pp. 60
[112] Following the Cosmic Evolution of Pristine Gas III: The Observational Consequences of the Unknown Properties of Population III Stars
R.Sarmento, E Scannapieco, and B. Côté 2019, ApJ, 871, 206, pp. 18
[111] Calibrating the low-frequency radio–SFR relation in nearby galaxies at 1-kpc scale with LOFAR V. Heesen, E. Buie II, CJ Huff, L. A. Perez, J. G. Woolsey, D. A. Rafferty, A. Basu, R. Beck, E. Brinks, C. Horellou, E. Scannapieco, M. Brüggen, R.-J. Dettmar, K. Sendlinger, B. Nikiel-Wroczynski, K. T. Chyzy, P. N. Best, G.H. Heald, & R. Paladino, 2019 A&A, 662, 8, pp. 23
[110] Using Real and Simulated Measurements of the Thermal Sunyaev-Zel'dovich Effect to Constrain Models of AGN Feedback A. Spacek, M. Richardson, E. Scannapieco, J. Devriendt, Y. Dubois, S. Peirani, & C. Pichon 2018, ApJ, 865, 109, pp. 12
[109] Understanding Star-Formation as a Markov Process
E. Scannapieco & M. Safarzadeh 2018, ApJL, 865, 14, pp. 5
[108] Modeling Photoionized Turbulent Material in the Circumgalactic Medium E. Buie, W. J. Gray, & E. Scannapieco 2018, ApJ, 864, 114, pp. 10
[107] Column Density Profiles of Cold Clouds Driven by Galactic Outflows J. Cottle, E, Scannapieco, & M. Brüggen 2018, ApJ, 864, 96, pp. 14
[106] A Limit on the Warm Dark Matter Mass From the Redshifted 21cm Absorption Line M. Safarzadeh, E. Scannapieco, & A. Babul 2018, ApJL, 859, 18, pp. 5
[105] Selecting Ultra-faint Dwarf Candidate Progenitors in Cosmological N-body Simulations at High Redshifts M. Safarzadeh, A. P. Ji, G. A. Dooley, A. Frebel, E. Scannapieco, F. A Gómez, B. W. O’Shea 2018, MNRAS, 476, 5006, pp. 9
[104] Following the Cosmic Evolution of Pristine Gas II: The Search for Pop III-Bright Galaxies R. Sarmento, E. Scannapieco, & S. Cohen 2018, ApJ, 854, 75, pp. 13
[103] The Fate of Gas-Rich Satellites in Clusters
M, Safarzadeh, & E. Scannapieco 2017, ApJ, 850, 88, pp. 7
[102] The Effect of Turbulence on Nebular Emission Line Ratios W. J Gray & E. Scannapieco 2017, ApJ, 849, 132, pp.11
[101] Constraining the Properties of Neutron Star Mergers by Simulating r-process Element Production in Ultra-Faint Dwarf Galaxies
M, Safarzadeh, & E. Scannapieco 2017, MNRAS, 471, 2088-2096
[100] The Production of Cold Gas Within Galaxy Outflows E. Scannapieco 2017, ApJ, 837, 28, pp. 17
[99] Numerical Simulation of Star Formation by the Bow Shock of the Centaurus A Jet
C. Gardner, J. Jones, E. Scannapieco, & R. A. Windhorst, 2017, ApJ, 835, 232, pp. 9
[98] Searching for Fossil Evidence of AGN Feedback in WISE-Selected Stripe-82 Galaxies by Measuring the Thermal Sunyaev-Zel’dovich Effect with the Atacama Cosmology Telescope A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, & P. Mauskopf 2017, ApL, 834, 102, pp. 16
[97] Following the Cosmic Evolution of Pristine Gas I: Implications for Milky Way Halo Stars R. Sarmento, E. Scannapieco, & L. Pan 2017, ApJ, 834, 23, pp. 20
[96] On the Formation of Molecular Clumps in QSO Outflows
A. Ferrara, & E. Scannapieco, 2016, ApJ, 833, 46, pp. 16
[95] The Impact of Unresolved Turbulence on the Escape Fraction of Ly-Continuum Photons M, Safarzadeh, & E. Scannapieco 2016, ApJL, 832, L9, pp. 4
[94] Comparing Simulations of AGN Feedback
M. L. A. Richardson, E. Scannapieco, R. J. Thacker, J. Devriendt, A. Slyz, J. Wurster, Y. Dubois, & J. Silk 2016, ApJ, 825, 83, pp. 26
[93] The Launching of Cold Clouds by Galaxy Outflows II: Hydrodynamic Interactions with Conduction M. Brüggen, & E. Scannapieco 2016, ApJ, 822, 31, pp. 17
[92] Constraining AGN Feedback in Massive Ellipticals with South Pole Telescope Measurements of the Thermal Sunyaev-Zel’dovich Effect
A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, & P. Mauskopf 2016, ApJ, 819, 128, pp. 22
[91] Atomic Chemistry in Turbulent Media II: Effect of the Redshift Zero Metagalactic Background W. J. Gray & E. Scannapieco 2016, ApJ, 818, 198, pp. 26 [90] Galaxy Outflows Without Supernovae S. Sur, E. Scannapieco, & E. Ostriker 2016, ApJ, 818, 28, pp. 17
[89] Observing and Analyzing Images From a Simulated High-Redshift Universe R. Morgan, R. Windhorst, E. Scannapieco, R. Thacker, 2015, PASP, 127, 803, pp. 22
[88] The Launching of Cold Clouds by Galaxy Outflows I: Hydrodynamic Interactions with Radiative Cooling E. Scannapieco, & M. Brüggen, 2015, ApJ, 805, 158, pp. 19
[87] Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling W. J. Gray, E. Scannapieco, & D. Kasen, 2015, ApJ, 801, 107, pp. 16
[86] Alignment of the Scalar Gradient in Evolving Magnetic Field S. Sur, L. Pan, & E. Scannapieco, 2014, ApJL, 790, 9, pp. 5
[85] Astrobiological StoichiometryP A. Young, et al. (including E. Scannapieco) 2014, Astrobiology, 14, 603-626
[84] High-Velocity-Dispersion Cold Gas in ULIRG Outflows. I: Direct Simulations
D. J. Williamson, R. J. Thacker, E. Scannapieco, & M. Brüggen 2014, MNRAS, 441, 389-403
[83] Mixing in Magnetized Turbulent Media
S. Sur, L. Pan, & E. Scannapieco, 2014, ApJ, 784, 94, pp. 13
[82] Formation of Compact Clusters from High-Resolution Hybrid Cosmological Simulations M. L. A. Richardson, E. Scannapieco, & W. J. Gray 2013, ApJ, 778, 80, pp. 22
[81] Modeling the Pollution of Pristine Gas in the Early Universe Sar, E. Scannapieco, & J. Scalo 2013, ApJ, 775, 111, pp. 34
[80] Hybrid Cosmological Simulations with Stream Velocities
M. L. A. Richardson, E. Scannapieco, & R. J. Thacker 2013, ApJ, 771, 81, pp. 13
[79] Thermal and Chemical Evolution of Collapsing Filaments
W. J. Gray, & E. Scannapieco 2013, ApJ, 768, 174, pp. 16
[78] Understanding Galaxy Outflows as the Product of Unstable Turbulent Support E. Scannapieco 2013, ApJL, 763, 51, pp. 5
[77] Mixing of Clumpy Supernova Ejecta into Molecular Clouds
L. Pan, S. J. Desch, E. Scannapieco, & F.X. Timmes, 2012, ApJ, 756, 102, pp. 21
[76] Near-Infrared Imaging of a z=6.42 Quasar Host Galaxy With the Hubble Space Telescope Wide Field Camera 3 M. Mechtley, R. A. Windhorst, R. E. Ryan, G. Schneider, S. Cohen, R. A. Jansen, X. Fan, N. Hathi, W. C. Keel, A. Koekemoer, H. R Rottgering, E. Scannapieco, D. P. Schneider, M. A. Strauss, H. J. Yan 2012, ApJL, 756, 38, pp. 6
[75] Remnants of Binary White Dwarf Mergers
C. Raskin, E. Scannapieco, G. Rockefeller, C. Fryer, S. Diehl, & F.X. Timmes, 2012, ApJ, 746, 62, pp. 15
[74] The Pollution of Pristine Material in Compressible Turbulence
L. Pan, E. Scannapieco, & J. Scalo 2012, Journal of Fluid Mechanics, 700, 459-489
[73] Identification of a Fundamental Transition in a Turbulently-Supported Interstellar Medium E. Scannapieco, W. Gray, & L. Pan 2011, ApJ, 746, 57, pp. 9
[72] Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows III: Observability and Connection to Halo Globular Clusters W. J. Gray, & E. Scannapieco 2011, ApJ, 742, 100, pp. 18
[71] Predicting the Merger Fraction of Lyman alpha Emitters from Redshift z~3 to z~7 V. Tilvi, E. Scannapieco, S. Malhotra, & J. Rhoads 2011, MNRAS, 418, 2196-2201
[70] S. H. Hansen, A. V. Maccio, E. Romano-Diaz, Y. Hoffman, M. Brüggen, E. Scannapieco, & G. S. Stinson 2011, ApJ, 734, 62, pp. 7
[69] Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows II: Effect of Turbulence and Metal-line Cooling
W. J. Gray, & E. Scannapieco 2011, ApJ, 733, 88-100
[68] Passive Scalar Structures in Supersonic Turbulence
L. Pan, & E. Scannapieco 2011, Physical Review E, 83, 04302(R), pp. 4
[67] 56Ni Production in Double Degenerate White Dwarf Collisions
C. Raskin, E. Scannapieco, G. Rockefeller, C. Fryer, S. Diehl, & F.X. Timmes, 2010, ApJ, 724, 111-125
[66] Mixing in Supersonic Turbulence
L. Pan, & E. Scannapieco 2010, ApJ, 721, 1765-1782
[65] The Size and Origin of Metal-Enriched Regions in the Intergalactic Medium from Spectra of Binary Quasars C. L. Martin, E. Scannapieco, S. L. Ellison, J. F. Hennawi, S. G. Djorgovski, & A. Fournier 2010, ApJ, 721, 174-192
[64] Simulating Supersonic Turbulence in Galaxy Outflows
E. Scannapieco, & M. Brüggen 2010, MNRAS, 405, 1634-1653
[63] Formation of Compact Stellar Clusters by High-Redshift Galaxy Outflows I: Nonequilibrium Coolant Formation
W. J. Gray, & E. Scannapieco 2010, ApJ, 718, 417-432
[62] Thermonuclear .Ia Supernovae from Helium Shell Detonations: Explosion Models and Observables K. J. Shen, D. Kasen, N. Weinberg, L. Bildsten, & E. Scannapieco 2010, ApJ, 715, 767- 775
[61] Mining the Galactic Halo for Very Metal-Poor Stars
S. Salvadori, A. Ferrara, R. Schneider, E. Scannapieco, & D. Kawata 2010, MNRAS, 401, L5-L9
[60] Spectra and Light Curves of Failed Supernovae
C. L. Fryer, P. J. Brown, F. Bufano, J. A. Dahl, C. J. Fontes, L. H. Frey, S. T. Holland, A. L. Hungerford, S. Immler, P. Mazzali, P. A. Milne, E. Scannapieco, N. Weinberg, & P. A. Young, 2009, ApJ, 707, 193-207
[59] Prompt Ia Supernovae are Significantly Delayed
C. Raskin, E. Scannapieco, J. Rhoads, M. Della Valle 2009, ApJL, 707, 74-78
[58] On Type Ia Supernova From The Collision of Two White Dwarfs
C. Raskin, F. Timmes, E. Scannapieco, S. Diehl, & C. Fryer 2009, MNRAS Letters, 399, 156-159
[57] A Physical Model of Lyman Alpha Emitters
V. Tilvi, S. Malhotra , J. Rhoads, E. Scannapieco, R. J.Thacker, I. Iliev, & G. Mellema 2009, ApJ, 704,724-732
[56] The Contribution of the IGM and Minihalos to the 21 cm Signal of Reionization, B. Yue, B. Ciardi, E. Scannapieco, & X. Chen, 2009, MNRAS, 398, 2122-2133
[55] Self-Regulation of AGN in Galaxy Clusters,
M. Brüggen, & E. Scannapieco 2009, Monthly Notices of the Royal Astronomical Society, 398, 548-560
[54] Power Spectrum for the Small-scale Universe
L. M. Widrow, P .J. Elahi, R. J. Thacker, M. Richardson, & E. Scannapieco 2009, MNRAS, 397, 1275-1285
[53] Evolution of X-ray Cavities
M. Brüggen, & E. Scannapieco 2009, Monthly Notices of the Royal Astronomical Society, 395, 2210-2220
[52] Subhaloes in Scale-Free Cosmologies
P. J. Elahi, R. J. Thacker, L. M. Widrow, & E. Scannapieco 2009, MNRAS, 395, 1950- 1962
[51] Globular Clusters as Testbeds for Type Ia Supernovae
E. Pfahl, E. Scannapieco, & L. Bildsten 2009, ApJL, 695, 111-114
[50] Predictions of Quasar Clustering: Redshift, Luminosity and Selection Dependence
R. J. Thacker, E. Scannapieco, & H. M. P. Couchman. & M. Richardson 2009, ApJ, 693, 552-563
[49] Using Spatial Distributions to Constrain Progenitors of Supernovae and Gamma Ray Bursts C. Raskin, E. Scannapieco, J. Rhoads, & M. Della Valle 2008, ApJ, 689, 358-370
[48] Subgrid Modeling of AGN-Driven Turbulence in Galaxy Clusters E. Scannapieco, & M. Brüggen 2008, ApJ, 686, 927-947
[47] Measuring AGN Feedback with the Sunyaev-Zel’dovich Effect E. Scannapieco, R. J. Thacker, & H. M. P. Couchman, 2008, ApJ, 678, 674-685
[46] The Spatial Distribution of the Galactic First Stars II: SPH Approach
C. B. Brook, D. Kawata, E. Scannapieco, H. Martel, & B. K. Gibson 2007, ApJ, 661, 10- 18
[45] The Spatial Distribution of the Galactic First Stars I: High-Resolution N-body Approach E. Scannapieco, D. Kawata, C. B. Brook, B. K. Gibson, R. Schneider, A. Ferrara, & B. K. Gibson 2006, ApJ, 653, 285-299
[44] Quasars: What turns them off?
R. J. Thacker, E. Scannapieco, H. M. P. Couchman, 2006, ApJ, 653, 86-100
[43] Relativistic Ionization Fronts
P. R. Shapiro, I. T. I liev, M. A. Alvarez, & E. Scannapieco, 2006, ApJ, 648, 922-935
[42] The Effect of Minihalos on Cosmic Reionization
B. Ciardi, E. Scannapieco, F. Stoehr, A. Ferrara, I. T. Iliev, & P. R. Shapiro 2006, MNRAS, 366, 689-696
[41] The Sources of Intergalactic Metals
E. Scannapieco, C. Pichon, B. Aracil, P. Petitjean, R. J. Thacker, D. Pogosyan, J. Bergeron, & H. M. P. Couchman 2006, MNRAS, 365, 615-637
[40] AGN Feedback Causes Downsizing
E. Scannapieco, J. Silk, R. Bouwens 2005, ApJL, 635, 13-16
[39] Where are the Missing Cosmic Metals?
A. Ferrara, E. Scannapieco, & J. Bergeron 2005, ApJL, 634, 37-40
[38] The Detectability of Pair-Production Supernovae at z£6
E. Scannapieco, P. Madau, S. Woosley, A. Heger, & A. Ferrara 2005, ApJ, 633, 1031- 1041
[37] The Type Ia Supernova Rate
E. Scannapieco & L. Bildsten 2005, ApJL, 629, 85-88
[36] What Can the Distribution of Intergalactic Metals Tell Us About the History of Cosmological Enrichment? E. Scannapieco 2005, ApJL, 624, 1-4
[35] The Impact of Small-Scale Structure on Cosmological Ionization Fronts and Reionization I. Iliev, E. Scannapieco, & P. R. Shapiro 2005, ApJ, 624, 491-504
[34] Toward an Improved Description of Lagrangian Bias E. Scannapieco & R. J. Thacker 2005, ApJ, 619, 1-11
[33] Suppression of Dwarf Galaxy Formation by Cosmic Shocks F. Sigward, A. Ferrara, & E. Scannapieco 2005, MNRAS, 358, 755-764
[32] A VLT Spectroscopic Survey of a Forming Cluster of Galaxies at z = 0.837
R. Demarco, P. Rosati, N. L. Homeier, E. Scannapieco, N. Benitez, V. Manieri, M. Nonino, M. Girardi, S. A. Stanford, P. Tozzi, S. Borgani, & G. Squires 2005, A&A, 432, 381-394
[31] Triggering the Formation of Halo Globular Clusters with Galaxy Outflows E. Scannapieco, J. Weisheit, & F. Harlow 2004, ApJ, 615, 29-44
[30] Quasar Feedback: The Missing Link in Structure Formation E. Scannapieco & S. Peng Oh 2004, ApJ, 608, 62-79
[29] The Clustering of Intergalactic Metals
C. Pichon, E. Scannapieco, B.Aracil, P. Petitjean, D. Aubert, J. Bergeron, & S. Colombi 2003, ApJL, 587, 97-100
[28] On the Spatial Correlations of Lyman Break Galaxies
E. Scannapieco & R. J. Thacker 2003, ApJL, 590, 69-72
[27] Nonlinear Clustering During the Cosmic Dark Ages and its Effect on the 21-cm Background from Minihalos I. Iliev, E. Scannapieco, H. Martel, & P. R. Shapiro 2003, MNRAS, 341, 81-90
[26] The Detectability of the First Stars and Their Cluster Enrichment Signatures E. Scannapieco, R. Schneider, & A. Ferrara 2003, ApJ, 589, 35-52
[25] Violence in the Dark Ages R. J. Thacker, E. Scannapieco, & M. Davis 2002, ApJ, 581, 836-843
[24] Feedback Processes in Early-Type Galaxies I. Ferreras, E. Scannapieco, & J. Silk 2002, ApJ, 579, 247-260
[23] Early Enrichment of the Intergalactic Medium and its Feedback on Galaxy FormationE. Scannapieco, A. Ferrara, & P. Madau 2002, ApJ, 574, 590-598
[22] An Analytical Approach to Inhomogeneous Structure Formation E. Scannapieco & R. Barkana 2002, ApJ, 571, 585-603
[21] How is the Reionization Epoch Defined? M. Bruscoli, A. Ferrara, & E. Scannapieco 2002, MNRAS Letters, 330, 43-47
[20] High-Redshift Galaxy Outflows and the Formation of Dwarf Galaxies E. Scannapieco, R. J. Thacker, & M. Davis, 2001, ApJ, 557, 605-615
[19] Linking the Metallicity Distribution of Galactic Halo Stars to the Enrichment History of the Universe E. Scannapieco & T. Broadhurst 2001, ApJL, 550, 39-42
[18] The Role of Heating and Enrichment in Galaxy Formation E. Scannapieco & T. Broadhurst 2001, ApJ, 549, 28-45
[17] Is There a Detectable Ostriker-Vishniac Effect? E. Scannapieco 2000, ApJ, 540, 20-31
[16] Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American Test Flight of BOOMERANG P. Mauskopf et al. (including E. Scannapieco) 2000, ApJ Letters, 536, 59-62
[15] The Influence of Galactic Outflows on the Formation of Nearby Galaxies E. Scannapieco, A. Ferrara, & T. Broadhurst 2000, ApJL, 536, 11-14
[14] Detecting the Gravitational Redshift of Cluster Gas
T. Broadhurst & E. Scannapieco 2000, ApJL, 533, 93-97
[13] Lensing-Induced Structure of Submillimeter Sources: Implications for the Microwave Background E. Scannapieco, J. Silk, & J. C. Tan 2000, ApJ, 529, 1-11
[12] Temperature Correlations in a Finite Universe E. Scannapieco, J. Levin, & J. Silk 1999, MNRAS, 303, 797-800
[11] How the Universe Got Its Spots J. Levin, E. Scannapieco, G. de Gasperis, J. Silk, & J. D. Barrow 1998, Phys Rev D, 58, 123006 (14 pages). This work inspired the popular book, “How the Universe Got Its Spots: Diary of a Finite Time in a Finite Space,” by J. Levin, published in 2002
[10] Is the Universe Infinite or Just Really Big? J. Levin, E. Scannapieco, & J. Silk 1998, Physical Review D, 58, 103516 (5 pages)
[9] The Effect of the Detector Response Time on Bolometric Cosmic Microwave Background Anisotropy Experiments S. Hanany, A. Jaffe, & E. Scannapieco 1998, MNRAS, 229, 653-660
[8] The Topology of the Universe: the Biggest Manifold of Them All J. Levin, E. Scannapieco, & J. Silk 1998, Classical & Quantum Gravity, 15, 2689 -2697
[7] Nuclear Temperature Measurements with Helium Isotopes H. Xi et al. (including E. Scannapieco) 1998, Nuclear Phys. A, 630, 160-167
[6] Temperature Measurements for Central Au + Au Collisions at 35A MeV M. Huang et al. (including E. Scannapieco) 1997, Phys. Rev. Lett. 78, 1648-165
[5] The Gold Flashlight: Coherent Photons (and Pomerons) at RHIC
S. Klein & E. Scannapieco 1998, in Photon 97}, eds. A. Buijs and F. C. Berne (World Scientific), pp. 5
[4] Polarization-Temperature Correlation from a Primordial Magnetic Field
E. Scannapieco & P. Ferreira 1997, Physical Review D, 56, R7493-7497
[3] Coherent Photons and Pomerons in Heavy Ion Collisions
S. Klein & E. Scannapieco 1997, Intersections of Particle and Nuclear Physics ed. T. W. Donnelly, (Springer-Verlag: New York), 412, 274-278
[2] STAR Note 243: Two Photon Physics with STAR
S. Klein & E. Scannapieco 1995, available online at http://www.star.bnl.gov
[1] Introduction to Finite Difference Techniques for Numerical Fluid Dynamics
E. Scannapieco & F. Harlow 1995, (Los Alamos National Laboratory Press: Los Alamos) 205 pages, available at http://scannapieco.asu.edu/fluids.html, Translated into Vietnamese for use by the Danish Aid organization, DANIDA.
- 2024-2027 NASA Astrophysics Decadal Survey Precursor Science: Robustly Modeling the Evolution of Galactic Winds in Realistic Large-scale Simulations
Awarded Amount: $744,409 (100% Credit) - 2024-2026 Team-Up Together EXCEL: Advancing the Next Generation of African American Earth and Space Physicists
Awarded Amount: $190,000 (100% Credit) - 2023-2025 NASA XRISM Guest Scientist Program: Disentangling the Phases of the M82 Outflow with Nonequilibrium Simulations
Awarded Amount: $124,365 (100% Credit) - 2023-2025 Space Telescope Science Institute: A Systematic Search for Wind-CGM Interactions in Star-forming Galaxies
Awarded Amount: $651,525 (25% Credit) - 2022-2025 NASA Theory: Modeling the Rise and Fall of the First Stellar Generation During the Epoch of Reionization
Awarded Amount: $424,084 (100% Credit) - 2017-2021 NSF-AAG: Following the Turbulent Enrichment of the High-Redshift Universe
Awarded Amount: $503,163 (100% Credit) - 2017-2020 NASA Theory: Making Great Galaxy Formation Simulation
Awarded Amount: $472,397 (20% Credit) - 2015-2019 NASA Theory: The Next Generation of Tools for Simulating Galaxy Outflows
Awarded Amount: $497,228 (100% Credit) - 2015-2018 NSF-IRES: Measuring Cosmic Magnetism with the Low Frequency Radio Array
Awarded Amount: $248,212 (100% Credit) - 2014-2017 NSF-AAG: Using the Sunyaev-Zel'dovich Effect to Measure AGN Feedback
Awarded Amount: $498,199 (100% Credit) - 2011-2014 NSF-AAG: Simulating Galaxy Formation with Fewer than a Trillion Zones
Awarded Amount: $486,798 (100% Credit) - 2011-2014 NASA Theory: Colliding and Merging White Dwarfs
Awarded Amount: $366,000 (50% Credit) - 2010-2013 NASA Earth and Space Science Fellowship: White Dwarf Collisions as a Unique Pathway for Supernovae
Awarded Amount: $90,000 (100% Credit) - 2010-2014 NSF-IRES: Studying Galactic and Intergalactic Magnetism with LOFAR
Awarded Amount: $149,408 (100% Credit) - 2010-2012 NASA Theory: Self-Enrichment of Primordial and Present-day Star Clusters
Awarded Amount: $474,437 (50% Credit) - 2008-2011 NSF-AAG: Constraining Double Degenerate Mergers Awarded Amount: $501,260 (50% Credit)
Courses
2026 Spring
| Course Number | Course Title |
|---|---|
| SES 799 | Dissertation |
| SES 692 | Research |
| SES 792 | Research |
| SES 495 | Undergraduate Thesis |
2025 Fall
| Course Number | Course Title |
|---|---|
| SES 106 | Habitable Worlds |
| SES 106 | Habitable Worlds |
| SES 494 | Special Topics |
| SES 792 | Research |
2025 Summer
| Course Number | Course Title |
|---|---|
| SES 692 | Research |
| SES 692 | Research |
| SES 792 | Research |
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 799 | Dissertation |
2025 Spring
| Course Number | Course Title |
|---|---|
| AST 112 | Intro Stars, Galaxies & Cosmo |
| SES 799 | Dissertation |
| SES 692 | Research |
| SES 792 | Research |
| SES 511 | Grad Exploration Project II |
2024 Fall
| Course Number | Course Title |
|---|---|
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 401 | SESE Colloquium |
| SES 501 | SESE Colloquium |
| SES 692 | Research |
| AST 301 | Physics of Astrophysics |
| SES 394 | Special Topics |
| SES 401 | SESE Colloquium |
| SES 511 | Grad Exploration Project II |
2024 Summer
| Course Number | Course Title |
|---|---|
| SES 692 | Research |
| SES 692 | Research |
| SES 792 | Research |
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 799 | Dissertation |
| SES 510 | Grad Exploration Project I |
2024 Spring
| Course Number | Course Title |
|---|---|
| SES 799 | Dissertation |
| SES 692 | Research |
| SES 792 | Research |
| AST 301 | Physics of Astrophysics |
| AST 394 | Special Topics |
2023 Fall
| Course Number | Course Title |
|---|---|
| AST 422 | Astrophysics II |
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 692 | Research |
2023 Summer
| Course Number | Course Title |
|---|---|
| SES 692 | Research |
| SES 692 | Research |
| SES 792 | Research |
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 799 | Dissertation |
2023 Spring
| Course Number | Course Title |
|---|---|
| SES 799 | Dissertation |
| SES 692 | Research |
| SES 792 | Research |
| AST 301 | Physics of Astrophysics |
| AST 394 | Special Topics |
2022 Fall
| Course Number | Course Title |
|---|---|
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 692 | Research |
| AST 521 | Stars and Interstellar Medium |
2022 Summer
| Course Number | Course Title |
|---|---|
| SES 692 | Research |
| SES 692 | Research |
| SES 792 | Research |
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 799 | Dissertation |
2022 Spring
| Course Number | Course Title |
|---|---|
| AST 112 | Intro Stars, Galaxies & Cosmo |
| SES 799 | Dissertation |
| SES 692 | Research |
| SES 792 | Research |
2021 Fall
| Course Number | Course Title |
|---|---|
| AST 591 | Seminar |
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 692 | Research |
| AST 498 | Pro-Seminar |
2021 Summer
| Course Number | Course Title |
|---|---|
| SES 692 | Research |
| SES 692 | Research |
| SES 792 | Research |
| SES 792 | Research |
| SES 799 | Dissertation |
| SES 799 | Dissertation |
2021 Spring
| Course Number | Course Title |
|---|---|
| SES 799 | Dissertation |
| SES 692 | Research |
| SES 792 | Research |
- 7/2025 Simulating the Impact of Black Holes on Cosmic Structure Formation -18th Potsdam Thinkshop, Potsdam, Germany
- 5/2025 Numerically Modeling of Cold Gas in Galactic Outflows - Contents of the Fermi Bubbles and Related Topics, Green Bank, WV
- 11/2024 Astrophysics at Arizona State University - Conference on US-Mexico Cooperation in Astronomy, Mexico City, Mexico
- 08/2024 Modeling Turbulence in the Circumgalactic Medium - Toward a Holistic Understanding of the Circumgalactic Medium Workshop, Aspen Center for Physics, Aspen, CO
- 06/2024 The Evolution of Turbulent Fluctuations - Intracluster Medium Theory & Computation Workshop, Ann Arbor, MI
- 06/2024 Mentoring for Habitable Worlds Observatory - 3rd Habitable Worlds Observatory Face-to-Face Meeting, Baltimore, MD
- 03/2024 Turbulence and the Evolution of the Multiphase Circumgalactic Medium - Turbulence in the Universe, KITP, Santa Barbara, CA
- 03/2024 Mentoring for Habitable Worlds Observatory - 2nd Habitable Worlds Observatory Face-to-Face Meeting, Pasadena, CA
- 09/2023 What Governs the Density Evolution of Turbulent Media? - MIST2023: Cosmic turbulence and Magnetic fields, Cargèse, France
- 03/2023 Constraining Feedback and Dust at z >1 - The Cosmic Web: Connecting Galaxies to Cosmology, KITP, Santa Barbara, CA
- 12/2022 Disentangling the M82 Outflow with Nonequilibrium Simulations - XRISM Core-to-Core Multiwavelength Workshop, Tsukuba, Japan
- 11/2022 Why Did the Most Massive Galaxies Stop Forming Stars? - SESE Colloquium, ASU, Tempe, AZ
- 10/2022 Data-Driven Modeling - Understanding NASA SMD Needs for Data and Computing, Greenbelt, MD
- 10/2022 Simulating the Invisible Halo Around Galaxies - SESE New Discoveries Lecture, ASU, Tempe, AZ
- 09/2022 Simulating the Structure of the Cicumgalactic Medium - What Matter(s) Around Galaxies Conference, Chompoluc, Italy
- 08/2022 Simulating he Thermal History of Groups and Clusters - 6th ICM Theory and Computation Workshop, Copenhagen, Denmark
- 04/2022 Why Did the Most Massive Galaxies Stop Forming Stars? - Astrophysics Colloquium, Hamburg University, Germany
- 03/2022 Why Did the Most Massive Galaxies Stop Forming Stars? - Physics and Astronomy Colloquium, University of Southern California
- 11/2021 NASA Fellowship and Funding Opportunities in Astrophysics - SACNAS National Diversity in STEM (NDiSTEM) Digital Conference
- 01/2021 NASA Fellowship and Funding Opportunities in Astrophysics - American Astronomical Society, Virtual Conference
- 11/2020 NASA Fellowship and Funding Opportunities in Astrophysics - National Society of Black Physicists, Virtual Conference
- 02/2020 Astrophysical Computation and Theory at NASA- Astro 2020 Decadal Review, National Academy of Sciences, Washington, DC
2021 NASA HQ Honor Award Awarded for advancing restructuring the Astrophysics Research Program to remove barriers to the participation of underrepresented groups.
2019 NASA HQ Honor Award Awarded for executing the computational and theoretical astrophysics program on schedule and meeting all metrics following the government shutdown.
2019 Dr. Manuel Servín Faculty Award Awarded for exemplifying achievement in research, leadership, community service, and mentorship of Hispanic students.
2007 Ontario Research and Innovation Optical Network (ORION), Discovery Award of Merit Awarded for conducting the largest cosmological simulation containing gas ever carried out.
2006 Aspen Center for Physics, Martin & Beate Block Award Awarded to the most promising young physicist attending a Winter Conference at the Aspen Center for Physics
Associate Editor - Science Advances
2018-Present Science Advances Associate Editor - American Association for the Advancement of Science
- Oversee editorial decisions for high-impact research spanning astrophysics, fluid dynamics, and heliophysics, evaluating over 100 submissions annually.
- Collaborate with a multidisciplinary group of scientific editors to improve peer review and maximize journal impact.
2023-2025 Habitable Worlds Observatory (HWO) Science, Technology, Architecture Review Team Member (START) - NASA Science Mission Directorate
- Co-led the mentoring working group, designing partnerships with universities and professional organization to strengthen the pipeline of future HWO users
- Advised NASA on equitable resource allocation for this multi-billion dollar flagship mission, designed to support the entire US astrophysics community,
- Defined HWO science cases in galaxy evolution and the circumgalactic medium, including support through next-generation HPC simulations.
2021-2024 SESE Associate Director - Arizona State University
- Executed a multi-year plan to improve undergraduate enrollment and retention across astrophysics, planetary science, Earth science, and systems engineering.
- Implemented a Code of Conduct and yearly individual development plans, improving graduate student mentoring.
- Launched ASU’s Heising-Simons 51 Pegasi Fellowship.
2020-2022 Astrophysics Program Manager for NASA Artificial Intelligence / Machine Learning (AI/ML) Task Force - NASA Science Mission Directorate
- Led NASA-wide initiative to advance AI/ML enabled research, assessing the needs and capabilities of all five NASA science divisions.
- Organized a community-wide workshop with more than 150 researchers to discuss AI/ML priorities, which resulted in over $10M in strategic investments.
- Advised NASA leadership on how to better support AI/ML research to improve mission data analysis.
2019-2022 Astrophysics Lead of NASA High-End Computing Allocation Board - NASA Science Mission Directorate
- Directed HPC time and storage allocations for over 200 grants and missions,
- Worked with NASA centers and universities to optimize resource utilization,
- Developed a strategic plan for future HPC investments at Ames Research Center, aligning infrastructure with evolving computational demands.
2021-2022 Astrophysics Research and Analysis Program Deputy Program Manager - NASA Science Mission Directorate
- Directed $100M/year in research investments spanning computational and observational astrophysics, laboratory studies, and mission-enabling technology.
- Aligned funding priorities with the National Academy of Science’s Decadal Survey, prioritizing high-impact computational and data-intensive projects.
- Streamlined peer review processes, reducing biases and administrative overhead.
2020-2022 Project Scientist for NASA Neil Gehrels Swift Observatory - NASA Science Mission Directorate
- Managed NASA's premier rapid-response space telescope for studying gamma-ray bursts, gravitational wave counterparts, and variable stars.
- Administered Swift science operations, including the guest investigator program and ensuring Swift remained one of NASA's top-ranked astrophysics missions.
- Maximized mission success by aligning project execution with the Astrophysics Division’s scientific goals and budget.
2018-2022 Program Manager for the Theoretical and Computational Astrophysics Networks (TCAN) and Astrophysics Theory (ATP) Programs - NASA Science Mission Directorate
- Managed a $16M annual budget, representing 50% of all U.S. federal funding for computational astrophysics.
- Oversaw multiple peer reviews with over 150 panelists each, spanning all areas of computational and theoretical astrophysics.
- Streamlined cross-agency collaboration with the National Science Foundation.
- Advised NASA leadership and National Academy committees on program achievements and goals, resulting a recommended 50% increase in funding.
2009-2017 Governance Board for Research Computing - Arizona State University
- Guided university-wide investments in HPC staffing and infrastructure, prioritizing departmental needs and interdisciplinary collaboration.
- Delivered regular presentations to departments and executive leadership to maintain faculty engagement and continued financial support.
2011-2014 Chair, SESE Computing Committee - Arizona State University
- Led decisions on data storage and computing infrastructure for over 300 faculty, postdocs, and students in astrophysics, planetary science, and Earth science.
- Served as primary liaison between academic departments and university-wide computing initiatives.