ean L. Seyler

Fulton Center, 300 E University Dr, Tempe, AZ 85281, USA

💌 slseyler@asu.edu | 🖸 sseyler | 🔻 sseyler | 🛅 sean-seyler | 🔃 sean-l-seyler | 📾 Sean L. Seyler

Education

Arizona State University Tempe, A7

Ph.D. IN Physics Aug. 2012 - Dec. 2017

Dissertation: Computational approaches to simulation and analysis of large conformational transitions in proteins

Cornell University Ithaca NY

M.Eng. in Engineering Physics Aug. 2011 - May. 2012

· M.Eng. project: Modeling dynamic ionization and radiation transport in a numerical magnetohydrodynamic code

Cornell University Ithaca, NY

B.S. IN ENGINEERING PHYSICS Aug. 2007 - May. 2011

• Minor in Applied Mathematics

Experience

ADJUNCT FACULTY

ASU Health Tempe, AZ

SENIOR PROJECT MANAGER Apr 2025 - current

- Development of ASU Health Venture Studio concept to accelerate innovation for critical medical technologies
- Facilitating collaborations to enable AI-/ML-powered medicine and medical technologies for education and training

VentSafe Medical San Francisco, CA

CO-FOUNDER AND CHIEF SCIENTIFIC OFFICER Nov. 2023 - current

- Lead scientist developing the next-generation ICU ventilator to treat Acute Respiratory Distress Syndrome (ARDS)
- Currently funded by NIH Phase I SBIR VENTSAFE: Life Saving Ventilation for the Treatment of ARDS
- Responsible for conceptualization, evolution, and supervision of research goals, activities, and grant-writing
- · Oversight of multiphysics modeling of fluid-structure interactions (COMSOL) and R&D of engineering prototypes

School of Molecular Sciences, Arizona State University

Tempe, AZ Jan 2025 – current

• Developing stochastic integration methods for dynamical systems with thermal noise

Developing DEP nanoparticle characterization methods based on the classical scattering problem

CHEMISTRY CLOUD LAB DEVELOPER & CO-INSTRUCTOR

May 2022 - Jan. 2025

- Co-instructor for ASU Online CHM 343 (Physical Chemistry Laboratory)
- Software developer for open-source remote-learning tools for ASU Online CHM 343
- Developed familiarity with quantum chemistry software (GAMESS, ORCA, Psi4)
- Developed the MoleCalc web app (molecalc.cloud) for CHM 343 students

RESEARCH LABORATORY MANAGER Nov. 2020 - Nov. 2023

- Co-led development of a SARS-CoV-2 point-of-need (PON) diagnostic device using mechanical and electronic filtration
- Managed, scheduled, and coordinated experimental and computational studies
- Assembled/Maintained computing infrastructure, including lab workstations, networking, and data storage hardware
- Oversaw computational activities of the lab (COMSOL), including troubleshooting and student training
- · Oversaw chemistry wet lab operations: safety regulation compliance, inventory/procurement, and implementation of SOPs

INDEPENDENT RESEARCH May 2021 – current

- Developed a new stochastic integration method for generalized Langevin equations
- · Developed a new hydrodynamic theory for describing fluid physics and correlations at molecular scales
- Wolfram Community Featured Contributor Molecular hydrodynamic theory of the velocity autocorrelation function (Staff Picks)
- Developed new DEP characterization method for micro-/nanoparticles based on classical scattering problem

Department of Physics, Arizona State University

Tempe, AZ

POSTDOCTORAL RESEARCH SCHOLAR

Jan. 2018 - Nov. 2020

- Investigated role of hydrodynamic effects on biological transport processes at subcellular scales
- Developed a state-of-the-art numerical code for generalized Langevin equations (bitbucket.org/sseyler/glsimulator)
- Developed custom particle tracking code based on Trackpy for accurate position/velocity measurements in phase contrast microscopy

Department of Physics, Arizona State University

BLUE WATERS GRADUATE FELLOW

Tempe, AZ

Sep. 2016 - Dec. 2017

- Developed a hybrid atomistic-continuum simulation approach for biomolecular systems
- Developed new fluctuating hydrodynamics (FHD) algorithm and code (bitbucket.org/sseyler/hermeshd)
- Used Blue Waters supercomputer for code development with MPI and domain decomposition

GRADUATE RESEARCH ASSISTANT

Aug. 2012 - Dec. 2017

- Investigated protein conformational transitions using dimensionality reduction and clustering techniques
- · Leveraged HPC and supercomputers to perform molecular dynamics and enhanced-sampling simulations
- Developed (Path Similarity Analysis) method for analyzing conformational transitions of large biomolecules

School of Applied and Engineering Physics, Cornell University

Ithaca, NY

M.Eng. Student Researcher

Aug. 2011 - Jun. 2016

- Studied basics of continuum modeling for high-energy density physics (HEDP)
- · Developed modular structure for PERSEUS XMHD code (Fortran90); enabled toggling of radiation transport model
- Implemented dynamic ionization and radiation transport models in PERSEUS
- Performed Z-pinch simulations using PERSEUS to study radiation transport effects

Lab of Plasma Studies, Cornell University

Ithaca, NY

Undergraduate Researcher

Undergraduate Researcher

Jun. 2010 - Mar. 2012

Jun. 2010 - Mar. 2012

- Learned basic principles of parallel computation, GPGPU programming, and CUDA Fortran.
- Modularized the Fortran90 xMHD code PERSEUS for task-parallelization using CUDA Fortran.

Department of Electrical and Computer Engineering, Cornell University

Ithaca, NY

- Sorted and post-processed large data sets containing upper-atmospheric wind measurements.
- Developed working knowledge of Fortran and Mathematica for sorting and visualizing large datasets.

Honors & Awards

INTERNATIONAL

2016 Lindau Nobel Laureate Meeting Young Scientist, 66th Lindau Nobel Laureate Meeting (Physics)

Lindau, Germany

DOMESTIC

2021	SUN Award , Arizona State University	Tempe, AZ
2020	Finalist, GSNP Postdoctoral Speaker Award, APS March Meeting	Denver, CO
2017	CLAS Student Leader, CLAS Leaders Program, ASU College of Liberal Arts and Sciences	Tempe, AZ
2017	Graduate Excellence Award, ASU College of Liberal Arts and Sciences	Tempe, AZ
2017	GPSA Outstanding Research Award, ASU Graduate & Professional Student Association	Tempe, AZ
2016	Blue Waters Graduate Fellowship, NCSA University of Illinois Urbana-Champaign	Tempe, AZ
2016	CLAS Student Leader, CLAS Leaders Program, ASU College of Liberal Arts and Sciences	Tempe, AZ
2016	Recipient , Molecular Imaging Corporation Endowment, ASU Department of Physics	Tempe, AZ
2016	Education Committee Travel Award, 60th Annual Meeting of the Biophysical Society	Los Angeles, CA
2015	ASU Summer Graduate Fellowship, ASU Department of Physics	Tempe, AZ
2015	Shirley Chan Student Travel Award , American Physical Society, Division of Biological Physics	San Antonio, TX
2014	Wally Stoelzel Physics Fellowship, ASU Department of Physics	Tempe, AZ
2012	David Delano Clark Award , Cornell University, School of Applied and Engineering Physics	Ithaca, NY
2012	Henri S. Sack Memorial Award , Cornell University, School of Applied and Engineering Physics	Ithaca, NY

Publications

Author order convention in the field: students first, principal investigator(s) last, joint first-authorship may be indicated. **Key:** asterisk ("*"): first theorist; dagger ("†"): communicating author.

2025 Streaming-particle method for dielectrophoretic characterization

AKM FAZLUL KARIM RASEL, EP RISTICH, MA HAYES AND **SL SEYLER***†

Accepted in Electrophoresis (2025).

Gradient Insulator-based Dielectrophoresis of Gold Nanoparticles

A RAMIREZ, AKM FAZLUL KARIM RASEL, P DAWSON, **SL SEYLER*** AND MA HAYES[†] Accepted in Electrophoresis (2025).

Thermodynamically consistent algorithms for generalized Langevin dynamics and temporal coarse-graining

EP RISTICH AND SL SEYLER[†]

In preparation (2025).

Fluctuating hydrodynamics formulated as a hyperbolic relaxation system

SL SEYLER, † CE SEYLER AND O BECKSTEIN

In preparation (2025).

2024 Enhanced green fluorescent protein streaming dielectrophoresis in insulator-based microfluidic devices

J Sheu, **SL Seyler**,* AKM Fazlul Karim Rasel and MA Hayes[†]

Accepted in Electrophoresis (2024). doi:10.1002/elps.202400123

2023 Molecular hydrodynamic theory of the velocity autocorrelation function

SL SEYLER[†] AND CE SEYLER

The Journal of Chemical Physics. 159(5), 054108 (2023). doi:10.1063/5.0153649

A Numerical Study on Microfluidic Devices to Maintain the Concentration and Purity of Dielectrophoresis induced Separated Fractions of Analyte

AKM FAZLUL KARIM RASEL, **SL SEYLER*** AND MA HAYES[†]

Analytical and Bioanalytical Chemistry 415, 4861-4873 (2023). doi:10.1007/s00216-023-04795-4

Surmounting potential barriers: hydrodynamic memory hedges against thermal fluctuations in particle transport

SL SEYLER AND S PRESSÉ[†]

The Journal of Chemical Physics. **153**, 041102 (2020). doi:10.1063/5.0013722

Swimming, fast and slow: strategy and survival of bacterial predators in response to chemical cues

M CARLSON, **SL SEYLER*** AND S PRESSÉ[†]

bioarXiv. (2021). doi:10.1101/2020.11.11.377200v1

2019 Long-time persistence of hydrodynamic memory boosts microparticle transport

SL SEYLER AND S PRESSÉ[†]

Physical Review Research. 1, 032003(R) (2019). doi:10.1103/PhysRevResearch.1.032003

Hydrodynamic interaction facilitates the unsteady transport of two neighboring vesicles

J Lee, **SL Seyler** and S Pressé[†]

The Journal of Chemical Physics. **151**, 094108 (2019). doi:10.1063/1.5113880

2017 Structure of the SLC4 transporter Bor1p in an inward-facing conformation

N COUDRAY, **SL SEYLER**, R LASALA, Z ZHANG, KM CLARK, ME DUMONT, A ROHOU, O BECKSTEIN AND DL STOKES Protein Science. **26**, 130–145 (2017). doi:10.1002/pro.3061

2016 MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations

RJ Gowers, M Linke, J Barnoud, TJE Reddy, MN Melo, **SL Seyler**, DL Dotson, J Domanski, S Buchoux, IM Kenney, and O Beckstein[†]

Proc of the 15th Python in Science Conf. 102-109 (2016). doi:10.25080/majora-629e541a-00e

datreant: persistent, Pythonic trees for heterogeneous data

DL DOTSON, **SL SEYLER**, M LINKE, AND O BECKSTEIN[†]

Proc of the 15th Python in Science Conf. 51-56 (2016). doi:10.25080/Majora-629e541a-007

2015 Path Similarity Analysis: a Method for Quantifying Macromolecular Pathways

SL SEYLER, A KUMAR, MF THORPE, AND O BECKSTEIN †

PLoS Computational Biology. **11**, e1004568 (2015). 10.1371/journal.pcbi.1004568

2014 Sampling large conformational transitions: adenylate kinase as a testing ground

SL SEYLER AND O BECKSTEIN †

Molecular Simulation. **40**, 10–11, 855-877 (2014). doi:10.1080/08927022.2014.919497

Patents

2024 Improved SpO2 Sensor for Reliable and Rapid Deployment in Critical Care Settings

D Barker, **SL Seyler**, S Degmetich, A Chatterji

Provisional patent (Application No. 63/697,967) filed April 2024.

Presentations

Talks at some meetings are competitively selected and marked with an asterisk ("*"). Presentations selected for special recognition or an award are marked with a dagger ("†"). Presenting author is listed first. **Invited presentations** are indicated with an underline.

Poster: Streaming Mode Dielectrophoresis to Characterize Micro and Nanoscale Particles	Raleigh, NC
AKM F K RASEL, EP RISTICH, SL SEYLER AND MA HAYES	Oct. 2024
SciX 2024, Raleigh Convention Center	
Poster: Numerical Investigation on Microfluidic Devices to Maintain Purity and	Covington, KY
Concentration of Separated Fractions of Bioparticles	coving con, ra
AKM F K RASEL, SL SEYLER AND MA HAYES	Oct. 2022
SciX 2022, Northern Kentucky Convention Center	
Poster: DC g-iDEP Trapping of Gold Nanoparticles	Flagstaff, AZ
A RAMIREZ, AKM F K RASEL, MA SAUER, SL SEYLER AND MA HAYES	Jul. 2021
Dielectrophoresis 2020.1, Northern Arizona University	
Poster: A Numerical Investigation to Extend Quantitation of Gradient-induced Forces	Flagstaff, AZ
within an Insulator-based Sawtooth Design	· ·
AKM F K RASEL, SL SEYLER AND MA HAYES	Jul. 2021
Dielectrophoresis 2020.1, Northern Arizona University	
Poster: A Numerical Investigation to Extend Quantitation of Gradient-induced Forces within an Insulator-based Sawtooth Design	Providence, RI
D CHARLOT, AKM F K RASEL, SL SEYLER AND MA HAYES	Can 2021
SciX 2021, Rhode Island Convention Center	Sep. 2021
Invited Seminar: Hydrodynamic Memory Hedges Against Fluctuating Sources of Energy	Tompo 17
SL SEYLER	Tempe, AZ Apr. 2020
Center for Biological Physics Seminar Series, ASU Department of Physics	ηρι. 2020
Talk:* Hydrodynamic memory and driven microparticle transport: hedging against	
fluctuating sources of energy	Denver, CO
SL SEYLER	Mar. 2021
APS March Meeting 2021	
Poster: Hydrodynamic Memory and Single-cargo Transport Efficiency in Liquids: Beyond	
Stokes' Law	Tempe, AZ
SL SEYLER AND S PRESSÉ	Nov. 2019
Nature Conferences: Functional dynamics—visualizing molecules in action	
Invited Talk: Hydrodynamics beyond Navier-Stokes: mass and energy transport in	C D: OD
nanofluidic flows through the lens of the numerical model	Sun River, OR
SL SEYLER	Jun. 2019
NCSA Blue Waters Symposium	
Talk: Transport of sub-micron particles in liquids: hydrodynamic memory effects can boost	Tompo 17
efficiency	Tempe, AZ
SL SEYLER AND S PRESSÉ	Mar. 2019
BioPhest Meeting, ASU Center for Biological Physics	
Talk: Hydrodynamic Brownian motion and nanoscale transport efficiency in liquids	Boston, MA
SL SEYLER AND S PRESSÉ	Mar. 2019
APS March Meeting 2019	
Talk: Fluctuating Hydrodynamics in the 13-moment Approximation for Simulating Biomacromolecular Nanomachines	Loa Angeles, CA
SL Seyler, CE Seyler and O Beckstein	Mar. 2018
APS March Meeting 2018	MGI. 2010
Invited Talk: Developing a Hybrid Atomistic-Continuum Method for Simulating Large-scale	
Heterogeneous Biomolecular Systems	Sun River, OR
SL SEYLER, CE SEYLER AND O BECKSTEIN	May 2017
2018 NCSA Blue Waters Symposium	may 2011
Invited Poster: Developing a Hybrid Atomistic-Continuum Method for Simulating	
Large-scale Heterogeneous Biomolecular Systems	Sun River, OR
SL SEYLER, CE SEYLER AND O BECKSTEIN	May 2017
CONTRACT DI WILL CO.	,

MAY 7, 2025 SEAN L. SEYLER · CURRICULUM VITAE

2017 NCSA Blue Waters Symposium

Talk: Dayak	pping a hybrid atomistic-continuum method for simulating large-scale	
	ous biomolecular systems	Tempe, AZ
•	Seyler and O Beckstein	Apr. 2017
	ing, ASU Center for Biological Physics	
	esentation: Quantifying Macromolecular Transition Paths with Path Similarity	Los Angeles, CA
_	Colburn, A Kumar, MF Thorpe, and O Beckstein	Mar. 2016
*	eeting of the Biophysical Society	Mai. 2010
	n Similarity Analysis: a Method for Quantifying Macromolecular Pathways	Tempe, AZ
	KUMAR, MF THORPE, AND O BECKSTEIN	Oct. 2015
	ers Section (4CS) 2015 Annual Meeting	OCt. 2013
	imilarity Analysis: a method for quantifying macromolecular transition	
pathways	minuments Analysis. a method for quantifying macromotecular transition	Tempe, AZ
-	Kumar, MF Thorpe, and O Beckstein	May, 2015
	ing, ASU Center for Biological Physics	
	ntifying macromolecular conformational transition pathways	San Antonio, TX
_	KUMAR, MF THORPE, AND O BECKSTEIN	Mar. 2015
APS March Me		
	ifying conformational transitions: an application to simulations of apo	
adenylate k		Tucson, AZ
-	KUMAR, MF THORPE, AND O BECKSTEIN	Apr. 2014
	ing, University of Arizona Biological Physics Program	
	inar: Quantifying conformational transitions	Pittsburgh, PA
SL SEYLER		Nov. 2013
University of P	ittsburgh, Department of Biological Sciences	
	proach to quantifying conformational transitions	Denver, CO
-	KUMAR, MF THORPE, AND O BECKSTEIN	Oct. 2013
	ers Section (4CS) 2013 Annual Meeting	
	ifying conformational transitions	Tempe, AZ
-	D O BECKSTEIN	Apr. 2013
	ing, ASU Center for Biological Physics	7,711,2020
Mentor	ship & Service	
	Reviewer (ad hoc). Journals: Computer Methods in Biomechanics and Biomedical Engineering	
2014-	(invited), Archives of Biochemistry and Biophysics (invited), Proteins (supervised), Journal of the	Tempe, AZ
	American Chemical Society (supervised), Proceedings of the National Academy of Sciences (supervised)	
	Mentor and Project Advisor, Mentee – Erin P Ristich (ASU Honors Student in Computer Science).	
2023–	Honors thesis committee member and primary project advisor.	Tempe, AZ
	Mentor, Mentee – AKM Fazlul Karim Rasel (ASU Chemistry PhD candidate). Developing new methods for	
2022-	(bio)particle characterization and enrichment using dielectrophoresis and microfluidic device design.	Tempe, AZ
	Mentor, Mentee – Michael Sauer (ASU Biochemistry PhD student). Development of a hybrid chemical	
2020–2023	kinetic model to investigate the Loop-Mediated Isothermal Amplification (LAMP) reaction network.	Tempe, AZ
	Mentor, Mentee – Mikayla Carlson (ASU Biochemistry PhD student). Elucidating the hunting strategy of	
2018-2022	Bdellivibrio bacteriovorus, a predatory bacterium, using physics models; development of LAMP assay for	Tempe, AZ
_010 _011	COVID point-of-need diagnostic device.	, e.m., e., ,
	Mentor, Mentee – Shep Bryan IV (ASU Physics PhD student). Bayesian prediction of unknown potential	
2020-2021	energy functions, particularly with realistic models of particle dynamics that include hydrodynamic	Tempe, AZ
	memory.	1 - 2
	Mentor, Mentee – Taylor Colburn (ASU Physics undergraduate student). Helped develop Dynamic	
2015-2019	Importance Sampling MD as applied to explicit solvent MD simulations; testing its viability on the Mhp1	Tempe, AZ
	membrane transporter protein.	
2023	Judge, ASU Department of Physics Undergraduate Research Symposium	Phoenix, AZ
2020		. 1100111/1,712

Judge, Regeneron International Science and Engineering Fair (ISEF), judge and interviewer for Physics & RemoteAstronomy2021Judge, Arizona Science and Engineering Fair, judge and interviewer for Physics & Astronomy and Computational Biology & Bioinformatics.Phoenix, AZ2021Judge, Maricopa Institute of Technology Science and Engineering Fair, judge and interviewerPhoenix, AZ

Technical Skills_

Programming
Scientific Computing
Simulation & Modeling
Web Development
Python, Cython, Fortran, C/C++, Mathematica, MATLAB, Java, Julia
Linux, HPC/Supercomputing, Git, Xarray/Pandas, Inkscape, ImageJ, GIMP, ETEX
VMD, NAMD, GROMACS, LAMMPS, CHARMM, OpenMM, GAMESS, Orca, Psi4, RDKit, Chimera, AutoCAD, COMSOL
Flask, FastAPI, HTML/CSS, Javascript, SQL, MongoDB, Nginx