Shize Yang
-
Phone: 480-965-1322
-
-
PSB 142A, 875 S. Palm Walk Tempe, AZ 85287
-
-
Shize Yang holds a Ph.D. degree in Condensed Matter Physics from Peking University, China. He obtained his bachelor's degree in physics from Shandong University. Dr. Yang joined Arizona State University in 2020 as an associate research scientist at Eyring Materials Center. Before that, Dr. Yang spent three years working on advanced abberation corrected scanning transmission electron microscopy at Oak Ridge National Laboratory and two years working on electron tomography and in-situ TEM at Brookhaven National Laboratory. He has over ten years of experience in aberration-corrected electron microscopy and spectroscopy and has successfully applied the advanced techniques to addressing materials science problems with numberous publications. His recent research interest is centered on monochromated electron energy loss spectroscopy, multi-dimensional tomography, 4D STEM and in-operando experiments on battery/catalyst/two-dimensional materials.
Postdoc Research Associate, Brookhaven National Laboratory, 2018/2-2020/3
Postdoc Research Associate, Oak Ridge National Laboratory, 2015/3-2018/2
Research Assistant, Institute of Physics, Chinese Academy of Sciences, 2014/7-2015/3
PhD degree in Condensed Matter Physics, Peking University, 2009/9-2014/7
Bachelor degree in Physics, Shandong University, 2005/9-2019/7
Monochromated electron energy loss spectroscopy
4D STEM
In-operando microscopy, spectroscopy and tomography
Battery, catalysis, 2D materials
Shize Yang, EMC, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85287-8301
[1] L. Wang, X. Tian, S. Yang, Z. Xu, W. Wang, and X. Bai, Dynamic nanomechanics of zinc oxide nanowires. Applied Physics Letters 100, 163110 (2012).
[2] Y. Shize, W. Lifen, T. Xuezeng, X. Zhi, W. Wenlong, B. Xuedong, and W. Enge, The Piezotronic Effect of Zinc Oxide Nanowires Studied by In Situ TEM. Advanced Materials 24, 4676 (2012).
[3] X. Min, Y. Shize, G. Hongyan, H. Wei, Y. Qingzhi, and G. Changchun, Observation of intermediate template directed SiC nanowire growth in Si–C–N systems. Nanotechnology 23, 415704 (2012).
[4] Q. Huang, F. Li, Y. Gong, J. Luo, S. Yang, Y. Luo, D. Li, X. Bai, and Q. Meng, Recombination in SnO2-Based Quantum Dots Sensitized Solar Cells: The Role of Surface States. The Journal of Physical Chemistry C 117, 10965 (2013).
[5] X. Tian, L. Wang, X. Li, J. Wei, S. Yang, Z. Xu, W. Wang, and X. Bai, Recent development of studies on the mechanism of resistive memories in several metal oxides. Science China Physics, Mechanics and Astronomy 56, 2361 (2013).
[6] L. Wang, Z. Xu, S. Yang, X. Tian, J. Wei, W. Wang, and X. Bai, Real-time in situ TEM studying the fading mechanism of tin dioxide nanowire electrodes in lithium ion batteries. Science China Technological Sciences 56, 2630 (2013).
[7] P. Li, Q. Liao, S. Yang, X. Bai, Y. Huang, X. Yan, Z. Zhang, S. Liu, P. Lin, Z. Kang, and Y. Zhang, In Situ Transmission Electron Microscopy Investigation on Fatigue Behavior of Single ZnO Wires under High-Cycle Strain. Nano Letters 14, 480 (2014).
[8] X. Tian, S. Yang, M. Zeng, L. Wang, J. Wei, Z. Xu, W. Wang, and X. Bai, Bipolar Electrochemical Mechanism for Mass Transfer in Nanoionic Resistive Memories. Advanced Materials 26, 3649 (2014).
[9] X. Tian, L. Wang, J. Wei, S. Yang, W. Wang, Z. Xu, and X. Bai, Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Research 7, 1065 (2014).
[10] L. Wang, D. Liu, S. Yang, X. Tian, G. Zhang, W. Wang, E. Wang, Z. Xu, and X. Bai, Exotic Reaction Front Migration and Stage Structure in Lithiated Silicon Nanowires. ACS Nano 8, 8249 (2014).
[11] S. Yang, X. Tian, L. Wang, J. Wei, K. Qi, X. Li, Z. Xu, W. Wang, J. Zhao, X. Bai, and E. Wang, In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence. Applied Physics Letters 105, 071901 (2014).
[12] W. Jiake, X. Zhi, W. Hao, T. Xuezeng, Y. Shize, W. Lifen, W. Wenlong, and B. Xuedong, In - situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles. Nanotechnology 25, 465709 (2014).
[13] L. Li, S.-H. Chai, A. Binder, S. Brown, S.-Z. Yang, and S. Dai, Synthesis of MCF-supported AuCo nanoparticle catalysts and the catalytic performance for the CO oxidation reaction. RSC Advances 5, 100212 (2015).
[14] P. Zhang, H. Lu, Y. Zhou, L. Zhang, Z. Wu, S. Yang, H. Shi, Q. Zhu, Y. Chen, and S. Dai, Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nature Communications 6, 8446 (2015).
[15] Z. Pengfei, L. Hanfeng, Y. Shize, Z. Wangcheng, Z. Wenshuai, J. Xueguang, H. Caili, and D. Sheng, Realizing Selective and Aerobic Oxidation by Porous Transition-Metal-Salt@Ceria Catalyst. ChemistrySelect 1, 1179 (2016).
[16] J. Di, C. Chen, S.-Z. Yang, M. Ji, C. Yan, K. Gu, J. Xia, H. Li, S. Li, and Z. Liu, Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution. Journal of Materials Chemistry A 5, 14144 (2017).
[17] W. Shan, P. Zhang, S. Yang, H. Zhu, P. Wu, H. Xing, and S. Dai, Sustainable synthesis of alkaline metal oxide-mesoporous carbons via mechanochemical coordination self-assembly. Journal of Materials Chemistry A 5, 23446 (2017).
[18] S. Linfeng, L. W. Sun, Y. Shize, C. M. F., L. Shi-Jun, A. L. Kee, T. Yongjian, M. Yunwei, K. Jing, and Y. H. Ying, Concurrent Synthesis of High-Performance Monolayer Transition Metal Disulfides. Advanced Functional Materials 27, 1605896 (2017).
[19] C. Tian, X. Zhu, C. W. Abney, X. Liu, G. S. Foo, Z. Wu, M. Li, H. M. Meyer, S. Brown, S. M. Mahurin, S. Wu, S.-Z. Yang, J. Liu, and S. Dai, Toward the Design of a Hierarchical Perovskite Support: Ultra-Sintering-Resistant Gold Nanocatalysts for CO Oxidation. ACS Catalysis 7, 3388 (2017).
[20] P. Zhang, L. Wang, S. Yang, J. A. Schott, X. Liu, S. M. Mahurin, C. Huang, Y. Zhang, P. F. Fulvio, M. F. Chisholm, and S. Dai, Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking. Nature Communications 8, 15020 (2017).
[21] S. Wu, J. Xiong, J. Sun, Z. D. Hood, W. Zeng, Z. Yang, L. Gu, X. Zhang, and S.-Z. Yang, Hydroxyl-Dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl Photocatalyst. ACS Applied Materials & Interfaces 9, 16620 (2017).
[22] G. Yongji, L. Bo, Y. Gonglan, Y. Shize, Z. Xiaolong, L. Sidong, J. Zehua, B. Elisabeth, V. Soumya, I. Y. Boris, L. Jun, V. Robert, Z. Wu, and M. A. Pulickel, Direct growth of MoS 2 single crystals on polyimide substrates. 2D Materials 4, 021028 (2017).
[23] Z. Pengfei, Y. Shize, C. M. F., J. Xueguang, H. Caili, and D. Sheng, Coordination-Supported Imidazolate Networks: Water- and Heat-Stable Mesoporous Polymers for Catalysis. Chemistry – A European Journal 23, 10038 (2017).
[24] P.-G. Felipe, Y. Shi-Ze, F. Victor, F. G. Shiou, B. E. E., C. M. F., J. De-en, and W. Zili, Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts. Angewandte Chemie International Edition 56, 9820 (2017).
[25] W. Zhan, S. Yang, P. Zhang, Y. Guo, G. Lu, M. F. Chisholm, and S. Dai, Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry. Chemistry of Materials 29, 7323 (2017).
[26] A. D. Oyedele, S. Yang, L. Liang, A. A. Puretzky, K. Wang, J. Zhang, P. Yu, P. R. Pudasaini, A. W. Ghosh, Z. Liu, C. M. Rouleau, B. G. Sumpter, M. F. Chisholm, W. Zhou, P. D. Rack, D. B. Geohegan, and K. Xiao, PdSe2: Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society 139, 14090 (2017).
[27] W. Peiwen, Y. Shize, Z. Wenshuai, L. Hongping, C. Yanhong, Z. Huiyuan, L. Huaming, and D. Sheng, Tailoring N-Terminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. Small 13, 1701857 (2017).
[28] Z. Xiang, J. Tian, T. Chengcheng, L. Chenbao, L. Xiaoming, Z. Min, Z. Xiaodong, Y. Shize, H. Lin, L. Honglai, and D. Sheng, In Situ Coupling Strategy for the Preparation of FeCo Alloys and Co4N Hybrid for Highly Efficient Oxygen Evolution. Advanced Materials 29, 1704091 (2017).
[29] D. Chen, P. Zhang, Q. Fang, S. Wan, H. Li, S. Yang, C. Huang, and S. Dai, Coordination-supported organic polymers: mesoporous inorganic-organic materials with preferred stability. Inorganic Chemistry Frontiers (2018).
[30] J. Sun, S. Wu, S.-Z. Yang, Q. Li, J. Xiong, Z. Yang, L. Gu, X. Zhang, and L. Sun, Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals. Applied Catalysis B: Environmental 221, 467 (2018).
[31] Y. Wang, S.-Z. Yang, Y. You, Z. Feng, W. Zhu, V. Gariépy, J. Xia, B. Commarieu, A. Darwiche, A. Guerfi, and K. Zaghib, High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode. ACS Applied Materials & Interfaces 10, 7061 (2018).
[32] Y. Wang, Z. Feng, S.-Z. Yang, C. Gagnon, V. Gariépy, D. Laul, W. Zhu, R. Veillette, M. L. Trudeau, A. Guerfi, and K. Zaghib, Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries. Journal of Power Sources 378, 516 (2018).
[33] C. Yi, Z. Shiyong, J. Bernt, V. Jean-Pierre, S. Martin, R. M. R., C. Min, L. Chang, C. M. F., M. Roland, C. Hui-Ming, Y. Shi-Ze, and J. S. Ping, Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. Advanced Materials 30, 1706287 (2018).
[34] P. Wan, Z. D. Hood, S. P. Adhikari, Y. Xu, S. Yang, and S. Wu, Enhancing the photoresponse and photocatalytic properties of TiO2 by controllably tuning defects across {101} facets. Applied Surface Science 434, 711 (2018).
[35] Y. Gong, H. Yuan, C.-L. Wu, P. Tang, S.-Z. Yang, A. Yang, G. Li, B. Liu, J. van de Groep, M. L. Brongersma, M. F. Chisholm, S.-C. Zhang, W. Zhou, and Y. Cui, Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nature Nanotechnology 13, 294 (2018).
[36] W. Xiao, S. Yang, P. Zhang, P. Li, P. Wu, M. Li, N. Chen, K. Jie, C. Huang, N. Zhang, and S. Dai, Facile Synthesis of Highly Porous Metal Oxides by Mechanochemical Nanocasting. Chemistry of Materials 30, 2924 (2018).
[37] C. Liang, B. Kim, S. Yang, L. Yang, C. Francisco Woellner, Z. Li, R. Vajtai, W. Yang, J. Wu, P. J. A. Kenis, and P. Ajayan, High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. Journal of Materials Chemistry A 6, 10313 (2018).
[38] L. M. Zheng, X. R. Wang, W. M. Lü, C. J. Li, T. R. Paudel, Z. Q. Liu, Z. Huang, S. W. Zeng, K. Han, Z. H. Chen, X. P. Qiu, M. S. Li, S. Yang, B. Yang, M. F. Chisholm, L. W. Martin, S. J. Pennycook, E. Y. Tsymbal, J. M. D. Coey, and W. W. Cao, Ambipolar ferromagnetism by electrostatic doping of a manganite. Nature Communications 9, 1897 (2018).
[39] S. Wang, F. Gong, S. Yang, J. Liao, M. Wu, Z. Xu, C. Chen, X. Yang, F. Zhao, B. Wang, Y. Wang, and X. Sun, Graphene Oxide-Template Controlled Cuboid-Shaped High-Capacity VS4 Nanoparticles as Anode for Sodium-Ion Batteries. Advanced Functional Materials 28, 1801806 (2018).
[40] C. Zhang, S. Yang, J. Wu, M. Liu, S. Yazdi, M. Ren, J. Sha, J. Zhong, K. Nie, A. S. Jalilov, Z. Li, H. Li, B. I. Yakobson, Q. Wu, E. Ringe, H. Xu, P. M. Ajayan, and J. M. Tour, Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. Advanced Energy Materials 8, 1703487 (2018).
[41] S. Wu, J. Sun, S.-Z. Yang, Q. He, L. Zhang, and L. Sun, Evolution of Oxyhalide Crystals under Electron Beam Irradiation: An in Situ Method To Understand the Origin of Structural Instability. Inorganic Chemistry 57, 8988 (2018).
[42] S. Wu, W. Sun, J. Sun, Z. D. Hood, S.-Z. Yang, L. Sun, P. R. C. Kent, and M. F. Chisholm, Surface Reorganization Leads to Enhanced Photocatalytic Activity in Defective BiOCl. Chemistry of Materials 30, 5128 (2018).
[43] P. Zhang, N. Chen, D. Chen, S. Yang, X. Liu, L. Wang, P. Wu, N. Phillip, G. Yang, and S. Dai, Ultra-Stable and High-Cobalt-Loaded Cobalt@Ordered Mesoporous Carbon Catalysts: All-in-One Deoxygenation of Ketone into Alkylbenzene. ChemCatChem 10, 3299 (2018).
[44] L.-B. Lv, S.-Z. Yang, W.-Y. Ke, H.-H. Wang, B. Zhang, P. Zhang, X.-H. Li, M. F. Chisholm, and J.-S. Chen, Mono-Atomic Fe Centers in Nitrogen/Carbon Monolayers for Liquid-Phase Selective Oxidation Reaction. ChemCatChem 10, 3539 (2018).
[45] S. Zhao, Y. Cheng, J.-P. Veder, B. Johannessen, M. Saunders, L. Zhang, C. Liu, M. F. Chisholm, R. De Marco, J. Liu, S.-Z. Yang, and S. P. Jiang, One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. ACS Applied Energy Materials (2018).
[46] Q. Shao, Y. Wang, S. Yang, K. Lu, Y. Zhang, C. Tang, J. Song, Y. Feng, L. Xiong, Y. Peng, Y. Li, H. L. Xin, and X. Huang, Stabilizing and Activating Metastable Nickel Nanocrystals for Highly Efficient Hydrogen Evolution Electrocatalysis. ACS Nano 12, 11625 (2018).
[47] S.-Z. Yang, Y. Gong, P. Manchanda, Y.-Y. Zhang, G. Ye, S. Chen, L. Song, S. T. Pantelides, P. M. Ajayan, M. F. Chisholm, and W. Zhou, Rhenium-Doped and Stabilized MoS2 Atomic Layers with Basal-Plane Catalytic Activity. Advanced Materials 30, 1803477 (2018).
[48] Y. Cheng, S. Yang, S. P. Jiang, and S. Wang, Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide. Small Methods 0, 1800440.
[49] P. Wu, Z. Wu, D. R. Mullins, S.-Z. Yang, X. Han, Y. Zhang, G. S. Foo, H. Li, W. Zhu, S. Dai, and H. Zhu, Promoting Pt catalysis for CO oxidation via the Mott–Schottky effect. Nanoscale (2019).
[50] M. Zhou, J. Zhao, P. Zhang, N. Chen, and S. Yang, Solvent-free and rapid synthesis of mesoporous Pt–iron oxide catalysts via mechanochemical assembly. Catalysis Science & Technology 9, 3907 (2019).
[51] S. Tan, F. Sayed, S. Yang, Z. Li, J. Wu, and P. M. Ajayan, Strong Effect of B-Site Substitution on the Reactivity of Layered Perovskite Oxides Probed via Isopropanol Conversion. ACS Materials Letters 1, 230 (2019).
[52] J. Di, C. Chen, S.-Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y.-X. Weng, J. Xia, L. Song, S. Li, H. Li, and Z. Liu, Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nature Communications 10, 2840 (2019).
[53] S.-Z. Yang, W. Sun, Y.-Y. Zhang, Y. Gong, M. P. Oxley, A. R. Lupini, P. M. Ajayan, M. F. Chisholm, S. T. Pantelides, and W. Zhou, Direct Cation Exchange in Monolayer MoS2 via Recombination-Enhanced Migration. Physical Review Letters 122, 106101 (2019).
[54] C. Song, S. Yang, X. Li, X. Li, J. Feng, A. Pan, W. Wang, Z. Xu, and X. Bai, Optically manipulated nanomechanics of semiconductor nanowires. Chinese Physics B 28, 054204 (2019).
[55] M. Liu, Z. Zhang, F. Okejiri, S. Yang, S. Zhou, and S. Dai, Entropy-Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonication-Assisted Wet Chemistry Method under Ambient Conditions. Advanced Materials Interfaces 6, 1900015 (2019).
[56] S. Wang, J. Liao, X. Yang, J. Liang, Q. Sun, J. Liang, F. Zhao, A. Koo, F. Kong, Y. Yao, X. Gao, M. Wu, S.-Z. Yang, R. Li, and X. Sun, Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 57, 230 (2019).
[57] J. Di, H. Zhu, J. Xia, J. Bao, P. Zhang, S.-Z. Yang, H. Li, and S. Dai, High-performance electrolytic oxygen evolution with a seamless armor core–shell FeCoNi oxynitride. Nanoscale 11, 7239 (2019).
[58] Y. Cheng, S. Zhao, H. Li, S. He, J.-P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M. F. Chisholm, S.-Z. Yang, C. Liu, J. G. Chen, and S. P. Jiang, Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Applied Catalysis B: Environmental 243, 294 (2019).
[59] L. Wang, J. Zhao, P. Zhang, S. Yang, W. Zhan, and S. Dai, Mechanochemical Synthesis of Ruthenium Cluster@Ordered Mesoporous Carbon Catalysts by Synergetic Dual Templates. Chemistry – A European Journal 25, 8494 (2019).
[60] Y. Cheng, S. He, S. Lu, J.-P. Veder, B. Johannessen, L. Thomsen, M. Saunders, T. Becker, R. De Marco, Q. Li, S.-z. Yang, and S. P. Jiang, Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Advanced Science 0, 1802066 (2019).
[61] J. Sun, Z. D. Hood, S. Wu, P. Wan, L. Sun, S. Yang, and M. F. Chisholm, Reversibly tuning the surface state of Ag via the assistance of photocatalysis in Ag/BiOCl. Nanotechnology 30, 305601 (2019).
[62] J. Di, J. Xia, M. F. Chisholm, J. Zhong, C. Chen, X. Cao, F. Dong, Z. Chi, H. Chen, Y.-X. Weng, J. Xiong, S.-Z. Yang, H. Li, Z. Liu, and S. Dai, Defect-Tailoring Mediated Electron–Hole Separation in Single-Unit-Cell Bi3O4Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation. Advanced Materials 0, 1807576 (2019).
[63] A. D. Oyedele, S. Yang, T. Feng, A. V. Haglund, Y. Gu, A. A. Puretzky, D. Briggs, C. M. Rouleau, M. F. Chisholm, R. R. Unocic, D. Mandrus, H. M. Meyer, S. T. Pantelides, D. B. Geohegan, and K. Xiao, Defect-Mediated Phase Transformation in Anisotropic Two-Dimensional PdSe2 Crystals for Seamless Electrical Contacts. Journal of the American Chemical Society 141, 8928 (2019).
[64] H. Chen, W. Lin, Z. Zhang, K. Jie, D. R. Mullins, X. Sang, S.-Z. Yang, C. J. Jafta, C. A. Bridges, X. Hu, R. R. Unocic, J. Fu, P. Zhang, and S. Dai, Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization. ACS Materials Letters 1, 83 (2019).
[65] Y. Cheng, S. He, J.-P. Veder, R. De Marco, S.-z. Yang, and S. Ping Jiang, Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem 6, 3478 (2019).
[66] Z. Zhang, S. Yang, X. Hu, H. Xu, H. Peng, M. Liu, B. P. Thapaliya, K. Jie, J. Zhao, J. Liu, H. Chen, Y. Leng, X. Lu, J. Fu, P. Zhang, and S. Dai, Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides. Chemistry of Materials (2019).
[67] R. Cai, S. Guo, Q. Meng, S. Yang, H. L. Xin, X. Hu, M. Li, Y. Sun, P. Gao, S. Zhang, H. Dong, S. Lei, K. Kim, H. Zeng, L. Sun, F. Xu, and Y. Zhu, Atomic-level tunnel engineering of todorokite MnO2 for precise evaluation of lithium storage mechanisms by in situ transmission electron microscopy. Nano Energy 63, 103840 (2019).
[68] Y. Wu, X. Xu, C. Zhu, P. Liu, S. Yang, H. L. Xin, R. Cai, L. Yao, M. Nie, S. Lei, P. Gao, L. Sun, L. Mai, and F. Xu, In Situ Visualization of Structural Evolution and Fissure Breathing in (De)lithiated H2V3O8 Nanorods. ACS Energy Letters, 2081 (2019).
[69] Y. Zhao, X. Wang, S. Yang, E. Kuttner, A. A. Taylor, R. Salemmilani, X. Liu, M. Moskovits, B. Wu, A. Dehestani, J.-F. Li, M. F. Chisholm, Z.-Q. Tian, F.-R. Fan, J. Jiang, and G. D. Stucky, Protecting the Nanoscale Properties of Ag Nanowires with a Solution-Grown SnO2 Monolayer as Corrosion Inhibitor. Journal of the American Chemical Society (2019).